Feyerabend

Feyerabend, Paul . Against method (oospr London Verso), Tegen De Methode. Lemniscaat 2008 . ISBN 1993978-90-477-0031-9

Contra-inductie: hypothesen introduceren en uit te werken die niet stroken met goed bewezen thorriem en of met goed vastgestelde feiten.

Toename van theorieën: anything goes.

‘De creatie van één ding en de creatie van, plus het volledige inzicht in, een juist idee van het ding zijn heel vaak onderdelen van één en hetzelfde ondeelbare proces en kunnen niet worden gescheten zover het proces tot stilstand te brengen’ (p 55).

‘.. dat talen en de reactiepatronen die ze inhouden niet louter instrumenten zijn om gebeurtenissen (feiten, toestanden) te beschrijven, maar dat ze gebeurtenissen (feiten, toestanden) eveneens vormgeven, dat hun ‘grammatica’ en kosmologie omdat, een allesomvattende visie op de wereld, op de samenleving, op de situatie van de mens, die het denken, het gedrag en de waarneming beïnvloedt’ (p 179). ‘Volgens Whorf komt de kosmologie van een taal deels tot uitdrukking door het openlijke gebruik van worden, maar ze berust ook op classificaties die geen openlijk kenteken hebben (..) maar die werken (..) door een onzichtbare ‘centrale uitwisseling’ van aaneengeschakelde verbindingen, zó dat ze de andere woorden die de klasse kenmerken, bepalen’ (p 179). Whorf . Language, Thought and Reality . Cambridge, mass. 1956 . P121.

Omdat na de paradigmaverschuiving nieuwe maatstaven bij oude worden gevoegd, is er geen gemeenschappelijke maat meer en kan er geen logische dwingende reden gegeven worden om te kiezen tussen twee theorieën. Dit is het principe van de incommensurabiliteitsthese. En object of theorie kan beoordeeld worden vanuit verschillende classificatie systemen; die, ten overvloede, beide aansluiten bij de voorhanden stimuli. Een voorbeeld hiervan in de sfeer van perceptie is (iedere afbeelding met perspectief in feite, bijvoorbeeld blokje met kruisje / piramide vanaf de basis of vanaf de apex gezien?). ‘In al deze voorbeelden hangt het waargenomen beeld af van ‘mentale doodposities’ die naar willekeur kunnen worden veranderd (..). Mentale disposities kunnen echter verstarren door ziekte, ten gevolge van een opvoeding binnen een bepaalde cultuur, of vanwege fysiologische determinanten die we niet onder controle hebben. (Niet elke verandering van taal gaat gepaard met perceptuele veranderingen.) Onze houding tegenover andere rassen of tegenover mensen met een andere culturele achtergrond hangt vaak af van’verstarde’ disposities van de tweede soort: omdat we hebben geleerd gezichten op een gekke manier te ‘lezen’ velen we geijkte oordelen en komen we op een dwaalspoor.’ (p 182).

En nagels is de perceptie afbeelding van een object in het brein van iemand. En pseudonabeeld is een afbeelding van een object in het brein van iemand (zonder dat die persoon het object percipieert, bijvoorbeeld door te zien. De familie van concepten rondom een pseudonabeeld en de familie van concepten rondom een materieel object zijn incommensurabel: ‘.. deze families kunnen niet gelijktijdig worden gebruikt en er kunnen noch logische, noch perceptuele verbanden tussen hen eisen gelegd.’ (p 183). De vraag is of een volwassene opgescheept is met een stabiel perceptuele wereld en een daarmee gepaard gaand stabiel conceptueel systeem, dat hij op vele manieren kan wijzigen maar waarvan de hoofdlijnen voor altijd vastliggen. Of is het realistischer te veronderstellen dat veranderingen die incommensurabiliteit met zich meebrengen mogelijk zijn en aangemoedigd moeten worden om een hoger kennis niveau te kunnen bereiken.

Er zijn geen ‘neutrale’ objecten die in ongeacht welke stijl dan ook kunnen worden weergegeven en die de nabijheid van die stijl aan de werkelijkheid afmeten. In andere woorden: iedere afbeelding van een object is door de wol van een bepaalde stijl geverfd; geen enkel object ontkomt daaraan. De toepassing van deze gedachte op talen ligt voor de hand. ‘Daarom zouden we eigenlijk niet moeten zoeken naar de psychische oorzaak van een ‘stijl’, maar eerder moeten proberen de elementen ervan te ontdekken, de functie ervan te analyseren, haar te vergelijken met andere uitingen van dezelfde cultuur ) literaire stijl, zinsconstructie, grammatica, ideologie) om zo tot een schets te komen van het daaraan ten grondslag liggende wereldbeeld, inclusief een verklaring van de wijze waarop dit wereldbeeld de waarneming, het denken en de argumentatie beïnvloedt, en van de grenzen die het aan het ronddwalen van de verbeeldingskracht oplegt.’ (p 185). Een paratactische weergave betekent dat een afbeelding uit componenten wordt samengesteld, en zich sequentieel laat begrijpen. Het ‘leest’ als bijvoorbeeld: kind (rustig), Leeuw (woest), Leeuw eet kind. Er is geen organisatie tussen de componenten, dus de gelaatsuitdrukking van het kind verandert niet. De afgebeelde personen drukken geen natuurlijk besef uit van hun situatie. Dat is wel zo in het geval van een hypotactische beschrijving. Mensen in de oudheid zouden zich ook marionetten kunnen voelen die alleen afhankelijk zijn van externe invloeden. Zo’n realistische interpretatie van stijlen strookt met de stelling van Whorf dat talen, behalve instrumenten om gebeurtenissen te beschrijven, ergens gebeurtenissen vormgeven. Er bestaat dan een linguïstische grens aan wat er in een bepaalde taal kan worden gezegd, en die grens valt samen met de grenzen van het ding zelf. Hij zou verder reiken omdat niet-linguïstische representaties zijn inbegrepen. De realistische interpretatie is aannemelijk maar niet vanzelfsprekend, omdat de kunstenaar een ‘draai’ kan hebben gegeven. ‘De argumentatie (die nooit afdoend kan zijn) bestaat uit het wijzen op karakteristieke kenmerken in ver uitengelegen gebieden. Als de typerende eigenschappen van een specifieke stijl in de schilderkunst ook worden aangetroffen in de beeldhouwkunst en in de grammatica van de talen uit die tijd (en hier vooral in verborgen classificaties die niet eenvoudig te traceren zijn), als kan worden aangetoond dat die talen zowel door kunstenaars als door gewone mensen worden gesproken, als er in de talen filosofische principes zijn geformuleerd die verklaren dat de typerende eigenschappen kenmerken van de wereld zijn en niet slechts kunstmatig toegebrachte kenmerken, en er geen poging wordt gedaan de oorsprong van die principes te verklaren, als de mens en de natuur die kenmerken niet alleen in de schilderkunst bronnen, maar ook in de dichtkunst, in veel voorkomende spreekwoorden en in de gangbare rechtspraak, als de gedachte dat de kenmerken onderdelen zijn van de normale waarneming niet wordt tegengesproken door iets wat we uit de fysiologie of de waarnemingspsychologie weten en als latere denkers de typerende eigenschappen aanvallen als ‘dwalingen’ die voortkomen uit onwetendheid over de’ware weg’ , dan mogen we aannemen dat we niet slechts te maken hebben met technische mislukkingen en specifieke doeleinden, maar met een coherente levenswijze, en mogen we verwachten dat mensen die op deze manier leven de wereld op dezelfde manier zagen als wij nu hun afbeeldingen zien’ (p 190). NB: Hoofdstuk 16 beschrijft een procedure om een meme(plex) te destilleren uit culturele expressies. Hierboven de samenvatting. Deze mensen leven inderdaad in een wereld zoals die door hun kunstenaars wordt afgebeeld.

‘Aldus opgevatte kennis wordt niet verworven door inzicht te krijgen in een essentie achter de boodschappen van zintuigen, maar door 1) de waarnemer in de juiste positie te plaatsen ten opzichte van het object (het proces, de verzameling), door hem op de passende plaats in te voegen in het complexe patroon dat de wereld vormt, en door 2) de elementen bij elkaar te voegen die onder deze omstandigheden worden opgemerkt.’ (p 196).

‘Net als ieder ander object is de mens en uitwisselingsplaats van invloeden en niet zozeer een unieke bron van actie, een ‘ik’ (het ‘Cogito’ van Descartes heeft geen aangrijpingspunt in deze wereld, en met zijn argumentatie kan zelfs geen begin worden gemaakt.)’ (p 197).

‘Er zijn te veel dingen, te veel gebeurtenissen, te veel situaties (Ilias, 2.488), en die kunnen slechts enkele van hen nabij zijn (Ilias, 2.485). Maar ook al kunnen mensen geen volledige kennis hebben, ze beschikken wel over een flinke hoeveelheid ervan. Hoe rijker hun ervaring, hoe groter het aantal van hun avonturen, van de dingen die ze gezien, gehoord en gelezen hebben, des te groter is hun kennis.’ (p 208).

‘En heel wereldbeeld, en heel universum van denken, spreken en waarnemen wordt ontbonden’ (p214). NB bij de overgang van kosmos A naar kosmos B (paradigma). ‘Gezien vanuit A (en eveneens vanuit het gezichtspunt van enkele latere ideologieën) zijn al deze denkers, dichters en kunstenaars malende krankzinnigen. .. We hebben een gezichtspunt (theorie, referentiekader, kosmos, wijze van re-presentatie) waarvan de elementen (concepten, ‘ feiten’, afbeeldingen) opgebouwd zijn volgens bepaalde constructie principes. De principes houden iets in als een soort afsluiting: er zijn dingen die niet kunnen worden gezegd of’ontdekt’, zonder de principes te overtreffen (en dat betekent niet heen tegenspreken). Zeg die dingen, doe de ontdekking, en de principes worden buiten werking gesteld. Neem nu die constituent principes die ten grondslag liggen aan elk element van de kosmos (van de theorie), elk feit (elk concept). Laten we zulke principes universele principesvan de theorie in kwestie noemen. Universele principes buiten werking stellen betekent alle feiten en alle concepten buiten werking stellen. Laten we tenslotte een ontdekking, of een uitspraak, of een houding incommensurabel met de kosmos (de theorie, het referentiekader) noemen als ze enkele van de universele principes ervan buiten werking stelt.’ ( p 215).

‘Hoe wordt de irrationaliteit van de overgangsperiode (van A naar B, dpb) overwonnen? Ze wordt overwonnen op de gebruikelijke manier (zie punt 8 hierboven), dat wil zeggen, door de vastbesloten productie van onzin, totdat het geproduceerde materiaal overvloedig genoeg is om aan de rebellen toe te staan nieuwe universele principes te onthullen en aan alle anderen die te erkennen. (..). Krankzinnigheid verandert in psychische gezondheid, mits ze rijk genoeg en ordelijk genoeg is om het als een fundament van een nieuw wereldbeeld te functioneren.’ (p 216-7).

‘Op basis van wat is gezegd, is het duidelijk dat er de inhoud van A en B niet kunnen vergelijken. (..). .. :B feiten presenteren betekent de principes buiten werking stellen die bij de constructie van A-feiten werden voorondersteld. Al wat we kunnen doen, is B-afbeeldingen van A-feiten in B tekenen, of B-uitspraken over A-feiten in B introduceren.’ (p 217).

Appendix 2

‘.. en dat lijkt te impliceren dat sterk verschillende talen niet alleen verschillende ideeën voor waar aannemen om dezelfde feiten te ordenen, maar dat ze ook verschillende feiten voor waar aannemen. Het ‘linguïstisch relativiteitsprincipe’ wijst zo te zien in dezelfde richting. Het zegt ‘dat, in informele termen, gebruikers van Bert uiteenlopende grammatica’s door hun grammatica’s worden gericht op verschillende soorten waarnemingen en verschillende evaluaties van uiterlijk soortgelijke waarnemings handelingen, en derhalve geen gelijkwaardige waarnemers zijn, maar bij enigzins verschillende wereldbeelden moeten uitkomen. (..) en dat kan betekenen dat waarnemers die van sterk verschillende taalkundig gebruik maken onder dezelfde materiële omstandigheden verschillende feiten voor waar zullen houden, ofwel dat ze soortgelijke feiten op verschillende manieren zullen ordenen.’ (p 219).

‘Incommensurabiliteit verdwijnt wanneer we concepten gebruiken zoals wetenschappers dat doen, op een open, ambigue en vaak contra-intuïtieve wijze. Incommensurabiliteit is een probleem voor filosofen, niet voor wetenschappers, ook al kunnen de laatst laatstgenoemden psychologisch de draad kwijtraken door ongewone dingen’ (p 221).

Wetenschap moet politiek zijn, het moet historisch onderbouwd zijn (maar op een niet-theoretische manier), en niet epistemologisch onderbouwd.

H17

‘Tot nu toe heb ik geprobeerd aan te tonen dat de rede, .., niet geschikt is voor de wetenschap en mogelijk niet heeft bijgedragen tot de ontwikkeling ervan. Zij moeten nu een keus maken. Ze kunnen de wetenschap behouden of ze kunnen de rede behouden; ze kunnen niet beide behouden’ (p 225).

‘De interacties en de resultaten daarvan hangen af van historische omstandigheden en variëren van geval tot geval. En machtige stam die een land binnenvalt, kan zijn weten opleggen en de inheemse tradities met geld veranderen, alleen maar om zelf te worden veranderd door de overblijfselen van de onderworpen cultuur’ (p 226) NB meer voorbeelden van wal en schip.

Naturalisme schiet tekort, omdat een tunnel ontstaat en alles uit het huidige wordt verklaard. Idealisme schiet tekort omdat de praktijk zich niet houdt aan de theoretische regels. Interactie schiet tekort omdat de twee werelden niet aansluiten, namelijk streng en ordelijk enerzijds en plooibaar en weerbarstig anderzijds. De aanvulling die nodig is is óf historisch onderzoek óf politieke actie. Hierover de volgende punten:

I tradities bestaan gewoon, goed noch slecht, II tradities krijgen pas al dan niet wenselijke eigenschappen in relatie met tot andere, III relativisme betreft tradities is verdedigbaar ergens redelijkheid en beschaafdheid IV iedere traditie heeft speciale middelen om volgelingen te werven, V Individuen of groepen die aan de interactie van tradities deelnemen kunnen een pragmatische filosofie aanvaarden bij de beoordeling van gebeurtenissen en structuren die zich aandienen VI Manieren om collectief een oordeel te vellen over een probleem zijn: geleide uitwisseling (alleen reacties binnen de kaders van een gedetailleerde traditie worden door deelnemers toegelaten) en open uitwisseling (de dit partijen gekozen aanpak ontwikkelt zich naar gelang het debat zich ontwikkelt) VII in een vrije samenleving hebben alle tradities gelijke rechten en toegang tot scholing en machtsposities VIII en vrije samenleving wordt niet opgelegd maar zal slechts ontstaan wanneer mensen en open uitwisseling aangaan en eventueel beschermende surfen indien al naar gelang van hun ontwikkeling IX debatten die de structuur van een vrije samenleving regelen zijn open en niet geleid X en vrije samenleving staat op een scheiding tussen wetenschap en samenleving.

H18

‘Volgens het idealisme is het rationeel (juist, in overeenstemming met de wil van de goden, – of welke andere bemoedigende worden er maar worden gebruikt om de inlanders een rad voor ogen te draaien) om bepaalde dingen te doen – wat er ook gebeurt. Het is rationeel (juist &c) om de vijanden van het geloof te vermoorden, ad-hoc hypothesen te vermijden, de beheren van het lichaam te verachten, tegenstrijdigheden uit te bannen, progressieve onderzoeksprogramma te ondersteunen enzovoort.’ (p 243).

Volgens het naturalisme is de rede volledig bepaald door onderzoek. Te handhaven is de gedachte dat onderzoek de rede kan veranderen.

Naturalisme en idealisme in combinatie: ‘.. een leidraad die deel uitmaakt van de geleide activiteit en die daardoor wordt veranderd.’ (p 245). Dus het probleem is niet de interactie van een praktijk met iets anders wat van buitenaf komt, maar de ontwikkeling van één traditie onder de invloed van andere‘ (p 245). Onderzoek dat zich niet aan de te onderzoeken maatstaven houdt. De natuur is kwalitatief en kwantitatief oneindig: er is behoefte aan het principe van het toenemen van inhoud. Theorieën die een overvloedige inhoud hebben in vergelijking met wat er al is zijn te verkiezen boven theorieën die dat niet hebben.

‘Anderzijds handhaven wij de les dat de geldigheid, het nut en de adequaatheid van populaire maatstaven slechts kunnen worden getoetst door onderzoek dat zich niet aan die maatstaven houdt‘ (p 247).

Experimenten van ( Salvador Luria en Delbrück 1943) op de bron van adaptatie van de weerstand van bacteriën tegen het binnendringen van bacteriofagen hebben de theorie van Lamarck weerlegd.

H19

‘Nu zijn methoden die niet uit gewoonte, zonder een gedachte te wissen aan de redenen daarvan, worden gebruikt, vaak gekoppeld aan metafysische overtuigingen’ ( p 255). NB metafysica is de wijsgerige leer die niet de realiteit onderzoekt zoals we die ervaren door middel van onze uiterlijke zintuigen (zoals de fysica), maar datgene wat boven de materie uitgaat, de totaliteit van al het gegevene.

‘Religie (..) zal lange tijd als een vitale kracht in de samenleving blijven bestaan. … Kan de religie niet worden vernietigd door de mensen die haar wellicht verwerpen. De spirituele zwakheid van het wetenschappelijke naturalisme is te wijten aan het feit dat het niet zo’n primaire bron van kracht kent.’ (EO Wilson In Human Nature . Cambridge Massachusetts . 1972 . p. 192 ev in Feyerabend p 260).

Ze (de toneelschrijvers, dpb) moeten in geen geval proberen ‘moreel gezag’ uit te oefenen. Moreel gezag, ten goede of ten kwade, verandert mensen in slaven, een slavernij, zelfs slavernij in dienst van het Goede of van God in eigen persoon, is de ellendige toestand die er bestaat.’ ( p 266).

H20

‘De kunsten, zoals ik hen tegenwoordig zie, vormen geen domein dat van het abstracte denken is gescheiden, maar vullen het aan een hebben er behoefte aan hun mogelijkheden volledig te realiseren.’ ( p 2

Hannah Arendt

Verantwoordelijkheid en Oordeel . Vertaald van Responsibility and Judgment . 2003 . Shocken books . NY . ISBN 90-5637-573-3

Uit Persoonlijke verantwoordelijkheid onder een dictatuur.

Gehoorzaamheid bestaat niet voor volwassenen. Wat er gebeurt is met jouw instemming.

Enkele problemen uit de moraal filosofie

Kant: den Begriff der Tugend würde klein Mensch haben wenn er lauter unter Spitzbuben wäre.

De dief gelooft ook in rechtsbescherming.

Misschien zouden we beter af zijn als we onszelf zouden toestaan ons tot de literatuur te wenden, tot Shakespear of Melville of Dostojevski, waar we de grote schurken aantreffen. Ook zijn zijn wellicht niet in staat ons iets specifieke te vertellen over de aard van het kwaad, maar ze gaan het in ieder geval niet uit de weg.

Verantwoordelijkheid versus schuld als staatsburger en afwezigheid daarvan als statenloze burger. Als je de voordelen geniet dan ook verantwoordelijk voor de nadelen maar niet schuldig eraan.

Collectieve schuld stopt als je niet langer lid bent van de groep. Niemand kan zonder groep. Je ruilt één groep inclusief verantwoordelijkheden in voor een andere.

De vraag is niet of een burger goed is maar of zijn gedrag goed is voor de wereld waarin hij woont.

Vanwege hun goddelijke herkomst zijn de regels van het christendom absoluut. De sancties toekomstige beloningen en straffen.

Socrates zegt: beter kwaad ondergaan dan kwaad aandoen. Het politieke antwoord is dat kwaad de wereld uit moet een dat kwaad geen plaats mag hebben in de wereld.

De ‘ziel’ in religieuze taal is de ‘zelf’ in seculiere taal.

Het morele argument in de vorm van een Socratische stelling om niet ‘mee te lopen’: als ik doe wat van me wordt gevraagd (als de prijs voor deelname), hetzij uit louter conformisme hetzij omdat het de enige kans is op uiteindelijk succesvol verzet, dan zou ik niet langer met mezelf kunnen leven; mijn leven zou voor mij niet meer de moeite waard zijn. Daarom onderga ik nu veel liever kwaad, een betaal zelfs liever de prijs van de doodstraf als ik tot deelname wordt gedwongen, dan dat ik kwaad die een voortaan met een boosdoener moet samenleven. Bijvoorbeeld een moord. Het is subjectief door zijn afhankelijkheid van de bereidheid om te lijden. Het geldt alleen voor mensen die expliciet met zichzelf leven, die kortom een geweten hebben. De enige seculiere activiteit die daar bij aansluit is denken als een stilzwijgende dialoog tussen mij en mijzelf. Dan kan verbeelding worden ingezet om elke handeling die wordt gevraagd te representeren. Geen enkele individuele moraal cq gedragsnormen kan ons ontheffen van collectieve verantwoordelijkheid. Want verantwoordelijkheid nemen voor dingen waar we geen schuld aan hebben is de prijs die er betalen voor het feit dat we met anderen samen leven en dat het vermogen tot handelen alleen kan worden verwerkelijkt in een vorm van menselijke gemeenschappelijkheid.

Denken en Morele Overwegingen

Het kwaad kan ontstaan uit een onvermogen om te denken. ‘ Clichés, stereotiepe frasen, zich houden aan conventionele een geijkte vormen van expressie en gedrag hebben de maatschappelijk erkende functie ons te beschermen tegen de realiteit, tegen het beroep op onze weloverwogen aandacht die alle gebeurtenissen en feiten krachtens hun bestaan opwekken. Als we voortdurend aan die oproep beantwoordden, zouden we uitgeput raken;..’ (pp 162-3). Is ons vermogen te oordelen over goed en kwaad, mooi en lelijk, dus afhankelijk van ons vermogen te denken? Valt een onvermogen om te denken samen met de afwezigheid van een geweten? Zou denken de mensen kunnen conditioneren tegen kwaad doen?

Kant heeft denken (intellect) van kennen (rede) gescheiden. Nu kan kennis (ie religie) de rede niet meer in de weg staan, maar slechts de rede zichzelf. Als dat onderscheid verband houdt met het onderscheid goed-kwaad dan moet van één ieder worden geëist dat hij denkt. Dus volgens Kant is de rede, filosofie nodig om het kwaad tegen te gaan.

‘Want het is het belangrijkste kenmerk van het denken is dat het alle doen ontbreekt, alle gewone activiteiten, ongeacht welke. .. Handelen en leven in de meest algemene zin van inter homines esse, ‘onder mijn medemensen vertoeven’ – het Latijnse equivalent voor ‘in leven zijn’ – voorkomt beslist dat we gaan nadenken’ (p 165). Het object van denken is altijd een re-presentatie, iets dat niet feitelijk maar slechts in de geest aanwezig is en dankzij de verbeeldingskracht ”present’ kan stellen in de vorm van een beeld’ (p 165). Denken gaat over verschijningsvormen: ‘.. ; zolang we met hem samenzijn denken we niet aan hem-al kunnen we wel indrukken verzamelen die later voedsel voor ons denken kunnen worden; ..’ (p 166).

Betreft een begrip dat een wolk aan verschijningsvormen vertegenwoordigt: ‘Het huis in en op zichzelf, een ‘auto kath’auto’, dat huis dat ons het woord laat gebruiken voor al deze specifieke en zeer uiteenlopende gebouwen, wordt nooit gezien, noch door de ogen van het lichaam noch door die van de geest; ieder denkbeeldig huis, hoe abstract ook, dat een minimum aan kenmerken heeft om het herkenbaar te maken, is al een specifiek huis’ (p 171).

‘Het woord ‘huis’ is zoiets als een bevroren gedachte die het denken als het ware moet ontdooien als het de oorspronkelijke betekenis ervan wil ontdekken’ (p 171).

Het ligt in zijn (de wind baan het denken) aard om uit te wissen, als het ware te ontdooien, wat de taal, het medium van het denken, tot gedachten heeft bevroren – de woorden (concepten, zinnen, definities, leerstellingen) waarvan Plato de ‘zwakheid’ en onbuigzaamheid zo schitterend aan de kaak stelt in de Zevende Brief. De bevroren gedachten zijn zo handzaam dat ze slapend kunnen worden toegepast. Als je begint te denken verandert alles in wanorde. Het gevolg is dat denken en destructieve activiteit is ‘.. voor gevestigde criteria, waarden, maatstaven voor goed en kwaad, kortom op die gewoonten en regels die we in moraal en ethiek behandelen’ (p 173). Op die manier kan denken en einde maken aan de orde en tot ‘goddeloos gedrag’ leiden. Denken is voor alle credos gevaarlijk; niet denken lijkt aanbevelenswaardig maar door ze te beschermen tegen de gevolgen van denken houden ze vast aan bestaande gedragsregels. Als ze daar niet over denken beoordelen ze nooit de inhoud ervan en zijn die gemakkelijk af te schaffen al zijn ze werkbaar door iemand die een alternatief biedt.

Wrange vruchten

‘.. en het oog van de reclamemakers* is steeds minder gericht op de behoeften van de consument en steeds meer op de behoefte van de koopwaar om in steeds grotere hoeveelheden te worden geconsumeerd’ (p 241). *the term “Madison Avenue” refers specifically to the agencies, and methodology of advertising.

Vooruitgang: ‘Op weg zijn is het doel’, maar niet omdat dit ‘op weg zijn’ een eigen schoonheid of betekenis bezat. Juist niet meer op weg zijn, stoppen met verspillen, stoppen met steeds meer een steeds sneller consumeren, op een bepaald moment zeggen dat het genoeg is, zou de onmiddellijke ondergang betekenen. Deze vooruitgang, die vergezeld gaat van het onophoudelijke tumult van reclamebureaus, heeft zich voortgezet ten koste van de wereld waarin we leven, ..’.

‘De verschrikkelijke waarheid die uit het verhaal dat in deze (Pentagon dpb) Papers wordt verteld kan worden geconcludeerd, is dat het enige duurzame doel het imago zelf geworden was, ..’ (p 242).

Design for a Brain

Ashby, W.R. . Design for a Brain – The origin of adaptive behaviour . John Wiley & Sons (second edition revisited) . 1960

Preface

This is a model for the adaptive behavior of the nervous system. The basis is the fact that the nervous system is adaptive and the hypothesis that it is mechanistic. It is attempted identify the properties the nervous system must have if it is both adaptive and mechanistic. To that end a logic of mechanism is required. Only what can be expressed in mathematical form is accepted so as to protect the rigor of expression. A coherent whole is developed from the concepts of organization, behavior, change of behavior, part, whole, dynamic system, co-ordination, &c.

Chapter 1, The Problem

1/1 The brain resembles a machine. The living organism behaves in a purposeful and adaptive way. The aim is to show that a system can be both mechanistic and adaptive. With the developed methosd it is possible to make a machine’s behavior adaptive.

Behaviour, Reflex and Learned

1 /2 Reflex behavior is genetically determined and not altered by individual experience. Learned behavior is not genetically determined and it is modified by an individual experience.

1/3 Reflex behavior is not in the scope of this research: each reflex is produced by some neural physico-chemical reflex to produce some behavior; this is complex but no difficulty of principle is involved.

1 /4 We are concerned with the second type, learned behavior; man produces many examples of this kind of behavior. The nervous system in people and animals is capable to develop behavior that is not genetically determined nor specified by a gene pattern in detail.

1/5 The principal concern here is with learning that changes behavior for the better; the exact meaning of ‘better’ will be discussed later on, but it relates to the bettering of the individual’s chances of survival. The problem in preliminary form: what are the cerebral changes occurring during the learning process? / Why does the behavior generally change for the better? / What type of mechanistic process can show the same advancement of behavior?

1/6 A perceived change can result in a response or change many times bigger through the spreading of the effect. The nerve cells can rouse mechanical power through their control of the muscles. The nerve cells have potentiality for action. The question how it changes for the better isn’t answered by the increase of activity; in real-life examples there is no relation between the change in energy prior to and after learning. The same counts for the level of activity: the correlation between more activity and an improvement of the situation can be negative.

The Relation of Part to Part

Normality at the level of components’ behavior bears no relation with normality at the level of the behavior of the organism, because the two forms of normality have no definite relationship.

1/8 Neural activities are composed of excitations, inhibitions and other physiological processes the correctness of which is not determined by the process itself but by its relations with other processes. ‘These considerations reveal the main peculiarity of the problem. When the nervous system learns, its behaviour changes for the better. When we consider its various parts, however, we find that the value of one part’s behaviour cannot be judged until the behaviour of the other parts is known; and the values of their behaviours cannot be known until the first part’s behaviour is known. All the valuations are thus conditional, each depending on the others. Thus there is no criterion for ‘better’ tha can be given absolutely, i.e. unconditionally. But a neuron must do something. How then do the activities of the neurons become co-ordinated so that the behaviour of the whole becomes better, even though no absolute criterion exists to guide the individual neuron?’ (p 7). NB: this is descriptive of the behavior of a wide variety of complex systems and how local and global behavior relate. Also it is descriptive of the control that the global behavior has as a context, an ambience, an environment over the local actors.

The genetic control of cerebral function

1/9 The development of adaptive behavior is genetic in the sense that the extent of the adaptive capabilities varies per species.

Restrictions on the concepts to be used

1/10 In this book the brain is treated as an organ that has been developed in evolution as a specialized means of survival.

1/11 Living matter is assumed similar to other matter. The only reason admitted for the behavior of some component is its own state and the condition of its immediate surroundings led by the usual laws of nature.

1/12 The ‘operational method’ will be followed and no concept will be used unless it can be shown to exist in objective form in non-living systems.

1/13 No teleological explanation for behavior will be used. The assumption is that a machine or an animal behaves in some way because its nature and its circumstances at some point allow it no other behavior.

1/14 Each component, of the observed system and the system’s environment alike, is assumed to function determinedly; this means it functions in one way, namely the way it is directed by its particular surrounding components. Strong proof exists that memory, as part of the nervous system, behaves determinately (ex. Skinner p 10). But this is part of the question and the statement that components are, will be tested.

1/15 The consequence of answering the research question is that, directly or by implication, will enable the specification of an artificial system to be made that will be able to develop adaptation in its behavior such as the living brain.​​​ Thus is the requirement to the quality of the answer to the research question: that a brain can be built based upon the specifications developed. NB: This is a very ambitious criteria: can’t this be a requirement for the development of a firm also?

1/16 The concept of consciousness is not included in the argumentation in this book, because it is not necessary to explain the subject of study of this book, learning. Example: to turn left with a bicycle one steers right first. Every bike rider has learned it and practices it, but not consciously so. This is not an argument against the existence of consciousness, but an argument against its use here: ‘This knowledge of personal awareness, therefore, is prior to all other forms of knowledge. If consciousness is the most fundamental fact of all, why is it not used int his book? The answer, in my opinion, is that Science deals, and can deal, only with what one man can demonstrate to another. .. And until such a method, or its equivalent, is found, the facts of consciousness cannot be used in scientific method’ (pp. 11-12).

1/17 State some well-known practical problem as a type-problem so that general problems may refer to it. NB: what could the equivalent of this question be concerning a firm? The summary of the research is: assumptions: the organism is mechanistic, the organism is composed of parts, the behavior of the whole is the outcome of the compounded actions of the parts, organisms change their behavior by learning and that they change it so that the latter behavior is better adapted to the environment than the earlier: ‘Our problem is, first, to identify the nature of the change which shows as learning, and, secondly, to find why such changes should tend to cause better adaptation for the whole organism’ (p 12).

Chapter 2. Dynamic Systems

2/1 It is important to define properties of dynamical systems because there is ample room for ambiguity and confusion. A first assumption is that with regards to the brain we are dealing with a dynamical system, something that changes with time; it will be referred to as the ‘machine’ and no restriction is applied to it.

2/2 The objective of this chapter is to construct a method for the study of this machine; the principal axioms as per 1/10 -15 are:

(1) it is precisely defines and in operational form (2) it must be applicable to all material machines, animate and inanimate (3) its procedure for obtaining information from the machinne must be objective (demonstrable to other observers) (4) it must obtain all information from the machine and no other source is permitted. ‘The method proposed here must have the peculiarity that it is applicable to all; it must, so to speak, specialise in generality’ (p 14). NB: some such condition s relevant to firm theory also, because there is no limitation to the number of staff, the turnover or the product range and it cannot be limited to some stage in the firm’s ontogeny; it must apply to every conceivable firm.

Variable and system

2/3 In this book we are concerned with the relations between parts and the focus will be on the behavior of the individual parts. To do that he focuses on any number of variables; a variable is defined as a measurable quantity which at every instant has a definite numerical value (if it can be represented by a pointer on a dial, even if the reading is 0 and the entity is absent): ‘Eddington’s statement on the subject is explicit: ‘The whole subject matter of exact science consists of pointer readings and similar indications. Whatever quantity we say we are ‘observing’, the actual procedure nearly always ends in reading the position of some kind of indicator on a graduated scale or its equivalent’’ (p 15).

2/4 Every real machine embodies an infinite number of variables, the lion’s share of which must be ignored; those considered by the observer are the system. If a new set of variables is drawn up, then a new system is considered.

2/5 As a consequence, first an observer must be given. The system is defined as the set of variables that the observer selects from the set available on the machine. The system therefore is different from the machine. On the list of variables, system is kept separated from time and time is not included in the variables of the system.

2/6 The state of a system at a given time is the set of numerical values of its variables at that instant. Two states are equal if and only if all of the pairs of numerical values of their variables are equal.

The operational method

2/7 In the book only the case is considered where the observer can control every variable and so that he has access to every state of the system. The postulate implies that any variable can be forced to follow some prescribed course. If a variable of the system cannot be set to the desired value, then the observer waits for it to occur (e.g. astronomical and meteorological systems). The observer also has control over the variables that are not a part of the system but that have an effect on it. This is assumed to arrive at a basis model; complications to not have full control over every variable can be added later.

2/8 The primary operation means that the observer enforces a particular state of the system by selecting the variables of the system; and he selects the variables of the environment, sets their values; and he allows a unit of time to elapse. He observes the state that the system goes to as it moves under the drive of its own dynamic nature; he observes a transition from a particular state under particular circumstances. The experimenter observes how one variable changes over time while another is kept constant or caused to change in some prescribed way.

2/9 This objective approach is required as the source of the knowledge must not be the previous experience of the observer, because it is not wholly reliable. The unexpected must be allowed to happen: ‘and the only way to be certain of the relation between parts in a new machine is to test the relation directly’ (p 19). The transition by this method is an objective and demonstrable fact.

2/10 The power of the method is that the experimenter can repeat it with variations and relate the ddifferent responses to the variations; after an operations te next may be varied a) include new or omit old variables, b) change of the initial state, and c) change of the surrounding states. These variations may be applied to yield second-order (and more) relations between responses and different levels. All our concepts will be expressed in terms of this method.

Phase-space and field

2/11 A line of behavior is specified by a succession of states and the time-intervals between them.

2/12 and 2/13 Representations of a system can be graphical, tabular (the most factual, suggesting nothing else), phase space (time is eliminated from the graph; a maximum representation of 3 variables is possible in a graph).

2/14 ‘A system’s field is the phase-space containing all the lines of behaviour found by releasing the system from all possible initial states in a particular set of surrounding conditions’ (P 23). The concept of a field defines all the characteristic behaviors of a system under constant conditions ‘frozen into one unchanging entity that can be thought of as a unit. Such entities can readily be compared and contrasted, and so we can readily compare behaviour with behaviour, on a basis that is as complete and rigorous as we care to make it’ (p 24). NB: what happens to a firm if some initial characteristic value of a variable is varied and it is ‘released’ into a static environment. The variable would have to pertain to the memeplex at the basis of the firm.

The Natural System

2/15 If a system is to be studied with profit its variables must have some naturalness of association: 1) if an active and relevant variable is left unobserved then the system becomes capricious; if the state is known and the external conditions then the transition is known; if the pairs C (external condition, input) and S (state, transition) invariably lead to the same transition given some C and / or some S then the system is a machine with input. A special case is a state-determined system where all the events in one field (all the system’s behaviors in some constant C) occur in one set of conditions, e.g. a pendulum: at no point of the field of a state-determined system do the lines of behavior cross.

2/16 What does a natural association of the variables mean? A definition must have these properties: 1) it must have the form of a test, separating all systems in two classes 2) its application must be objective 3) it must agree with common sense in typical and undisputed cases. Because of 3) no verbal definition is possible but a working hypothesis that must be used. A basis hypothesis in scientific research is that given a set of variables a larger set can be found that a) includes these variables and b) is state-determined. This is implicit in many scientific research and never mentioned explicitly. NB: ‘The assumption is known to be false at the atomic level. We, however, will seldom discuss events at this level; and as the assumption has proved substantially true over great ranges of macroscopic science, we shall use it extensively’ (p 28).

Strategy for the complex system

2/17 Theories are of various types: Newton is simple, precise and exactly true. ‘Darwin’s theory, on the other hand, is not so simple, is of quite low accuracy numerically, and is true only in a partial sense – that the simple arguments usually used to apply it in practice (..) are gross simplifications of the complex of events that will actually occur. The theory attempted in this book is of the latter type. The real facts of the brain are so complex and varied that no theory can hope to achieve the simplicity and precision of Newton’s; what then must it do? I suggest that it must try to be exact in certain selected cases, these cases being selected because there we can be exact… This scientific strategy is by no means as inferior as it may sound; in fact it is used widely in many scoences of good repute’ (p 29). NB: this is the level of the firm theory attempted also and so this can prove to be useful as a quote.

Chapter 3. The Organism as Machine.

3/1 In accordance with S. 1/11 it is assumed that living organism in its nature and processes is not different form other matter. The truth of this assumption will not be discussed. The chapter will deal with the technique of applying this assumptions to the complexities of biological systems.

The specification of behaviour

3/2 Is the behavior of a system capable of being specified by variables, given that their representation can be by dial readings (S. 2/3)? In principle the measurement of bodily functions can be represented by variables, though their measurement is with technical difficulty in practice.

3/3 But can not only ‘straightforward’ physico-chemical, but ALL biological events be represented by readings on dials? To that end it every associated variable is presumed present, but as long as it is unused to represent a system’ s behavior, its value remains 0. Now this method of description can be used in a wide range of phenomena. If there is no relation between the measurements then they can be cardinal instead of ordinal, provided that it is used systematically throughout the system and over time.

3 /4 The behavior of the organism must be measured and so subjective elements (what it thinks or feels) are ruled out and if the complexity increases then more than one variable can be applied to describe the system.

3/5 –

3/6 the nervous system in a physiological experiment can be assumed to be state-determined.

3/7 the animal in an experiment concerning conditioned reflexes can assumed to be state-determined.

3/8 ‘Given an organism, its environment is defined as those variables whose changes affect the organism, and those variables that are changed by the organisms behaviour. It is thus defined in a purely functional, not a material, sense’ (p 36) NB: the variables are internal to the system or internal to the environment. Their interface is the behavior of the organism and the environment respectively as isolated systems. The functionality implies that the boundary between environment and organism is functional also (and not material). The environment is a) representable by dials, b) objective, c) explorable by primary operations and d) state-determined.

Organism and environment

3/9 The free-living organism and its environment, taken together as one system can be represented with sufficient accuracy by a set of variables that forms a state-determined system. The organism and its environment can be treated by identical methods because the same assumptions are made about them.

3/10 ex.

3/11 The organism affects the environment and vice versa; the system has feed-back. Systems without feed-back are a special class of systems with feed-back.

3/12 If organism and environment are observed as one then the dividing line between them becomes conceptual if the view is not material but functional. If this flexibility of division is allowed then no bounds can be put to its application. In this sense, the cortex can have to deal with different environments within the body (eating without biting its tongue, playing without exhausting itself, talking without getting out of breath). The system now means not only the nervous system, but the organism-cum-its-environment; if the system has a property it belongs to the whole; detailed study is required to identify the contributions of the components. NB: this is relevant to identify the system that is a firm: following this description it is the components that identify a firm per se plus the environment (or environments) that it is associated with. It is relevant because it is assumed in my book that the firm is a resultant of the beliefs that are widely held in society and that for via patterns in the behavior of the people associated with the firm, a firm. ‘In some cases the dynamic nature of the interaction between organism and environment can be made intuitively more obvious by using the device, common in physics, of regarding the animal as the centre of reference. In locomotion the animal would then be thought of as pulling the world past itself’ (p 41). NB: this is an interesting way of experimenting wth the idea of how a firm would behave, ‘pulling the world past itself’.

Essential variables

3/14 The biologist must see the brain as a means of survival. As per 2/10 survival must be translated into the standard form here to say what it means in standard operations: the essential variables of a system are those that may change over the course of time and then show mere small deviations, other variables show large deviations initially that at some later stage become even larger until eventually the machine changes into something else. The first are the essential variables; they indicate whether an organism is or isn’t alive. NB: this relates to my question: ‘What is the invariant in the life time of the the firm?’ Translated to this theory: ‘What variables change with large variations and keeps changing at later stages of its life time?

3/15 The essential variables do not indicate lethality in the same way or with the same urgency. Survival can now be defined: ‘We can now define survival objectively and in terms of a field: it occurs when a line of behaviour takes no essential variable outside given limits’ (p 43). NB: How does this definition of survival relate to the viability condition as an extension of the autopoiesis theory?

Chapter 4. Stability.

4/1 Cube, sphere and cone resting on a horizontal surface are in stable, neutral and unstable equilibrium; stable equilibrium is used a lot here.

4/2 Stability is an aspect of a material body. We do not study physical bodies but entities abstracted from them; to that end we must define them as results of primary operations (S. 2/10):

4/3 The state of stability does not belong to a body but to a field.

4/4 Given a field then a state of equilibrium from which the representative point does not move. A transition from a stable point is to itself only. This is a point in phase-space and it does not mean that the object is not moving.

4/5 and 4/6 –

4/7 If a system is stable, then, after some displacement, it is possible to define a bound to the next movement of the representative point in phase-space. If it is unstable then this is not possible or it depends on something outside of the system.

4/8 ‘Given the field of a state-determined system and a region in the field, the region is stable if the lines of behaviour from all points in the region stay within the region. ’ (p 48) ‘A field will be said to be stable if the whole region it fills is stable; the system that provided the field can then be called stable’ (p 49).

4/9 –

4/10 If a line of behavior re-enters itself, the system undergoes a recurrent cycle. If the cycle is contained in a region and the lines lead into the cycle then the cycle is stable.

4/11 –

The diagram of immediate effects

4/12 and 4/13 the arrow between the representations of variables represents a relation between them (not a material connection between them). The chain of cause and effect is re-entrant. The diagram can be derived wholly from the results of primary operations. By reversing the arrows between the variables, the immediate effects between variables can be tested.

Feedback

4/14 The nature of the feedback usually have an effect of the stability of the system or its instability (runaway, vicious circle).

4/15 ‘But here it is sufficient to note two facts: a system which possesses feedback is usually actively stable or actively unstable; and whether it is stable or unstable depends on the quantitative details of he particular arrangement’( p 54). NB:

4/16 Stable systems have the property that if they are displaced from their equilibrium, then the subsequent response is such that the system is brought back to its equilibrium: ‘A variety of disturbances will therefore evoke a variety of matched reactions’ (p 54). This is specific for the behavior of a pendulum but not for the behavior of living organisms. This can be referred to as ‘goal seeking’. A stable system is not necessarily a rigid system and restricted only in the sense that it does not show the unrestricted divergences of instability. NB: this is relevant where it concerns the way in which a state in an evolutionary process restricts to possible configurations of the next state.

Stability and the whole

4/18 A system’s stability is a property of the entire system and can be contributed to no part of it. The stability belongs to the combination and it cannot be related to the parts considered separately. Examples are given of operations (combination with another system, separation from another system) on systems such as to render them stable or unstable.

4/19 ‘The fact that the stability of the system is a property of the system as a whole is related to the fact that the presence of stability always implies some co-ordination of the actions between the parts. .. as the number of variables increase so usually do the effects of variable on variable have to be co-ordinated with more and more care if stability is to be achieved’ (p 57).

Chapter 5. Adaptation as stability.

5/1 and 5/2 The definition must be precise and it must be given in terms that can be reduced to primary operations.

Homeostasis

5/3 ‘I propose the definition that a form of behaviour is adaptive if it maintains the essential variables (S. 3/14) within physiological limits’ (p 58). NB: to fully justify it involves an impossibly large task. It must however be sufficiently discussed to show how fundamental it is and how wide its applicability. First an outline of the concept of homeostasis as per Cannon: 1) each mechanism is ‘adapted’ to its end, 2) its end is the maintenance of the values of some essential variables within physiological limits and 3) almost all behavior of an animal’s vegetative system is due to such mechanisms. When an essential variable is driven outside its normal limits by an external disturbance then another process is started by the same external change activating a mechanism that opposes the disturbance. The essential variable is maintained in narrower limits than if the effects of the disturbance remained unopposed. ‘The narrowing is objective manifestation of the mechanism’s adaptation’ (p 61).

5/5 These mechanisms of 5/4 act mostly through the body but some of them act through the environment also. The extremes of homeostatic mechanisms are: those that work within the body alone and mechanisms that work largely through the environment.

Generalised homeostasis

5/6 The same criterion of homeostasis for adaptation can be used to judge the behavior of the free-living animal in its learned reactions. The cat regulates her distance to an open fire so as to optimize body heat while refraining from direct contact with the fire: ‘Such behavior is ‘adapted’: it preserves the life of the animal by keeping the essential variables within limits. The same thesis can be applied to a great deal, if not all, of the normal human adult’s behaviour. .. Many of the other conveniences of civilisation could, with little difficulty, be shown to be similarly variation-limiting. .. The thesis that ‘adaptation’ means the maintenance of essential variables within physiological limits is thus seen to hold not only over the simpler activities of primitive animals but over the more complex activities of the ‘higher’ organisms’ (pp. 62-3). NB: I find this remark about the limiting of variation very important because it seems to me to be very close to some generalized driving force of all organization to reduce the amount of variation (or rather uncertainty) that the organism has to deal with in its environment. Check the relation of this thesis with the thesis of Wagensberg concerning the reduction of uncertainties in the environment of an organism and also the thesis of Jagers te Opperhuis (?) about the utility of diversity with the consequence that to increase universal utility, order must increase or decrease. For order to increase or decrease, the level of organization must increase or decrease. If order increases for increased organization, order decreases also.

5/7 The first stage of the process of learning occurs when the animal ‘learns’ and it changes from an animal without to an animal with the mechanism, the second stage is when the developed mechanism changes from inactive to active.

5/8 ‘We can now recognize that ‘adaptive’ behaviour is equivalent to the behaviour of a stable system, the region of the stability being the region of the phase-space in which all the essential variables lie within their normal limits’ (p 64). Also quoted Starling, Cannon, Pavlov and McDougall.

Survival

5/9 and 5/10 The constancy of essential variables is crucial to adaptive behavior and the activity (change) of the other variables is important only to the extent that it contributes to this end.

Stability and co-ordination

5/11 Up to this point, the relation between stability and adaptation were discussed; now it is argued that co-ordination has an important connection with stability. Co-ordination means the combination of the behavior of several components such that the resulting movement of the whole is as appropriate.

5/12 Of stable systems we have so far only discussed the property of keeping variables in limits; other properties are: 1) the lines of behavior may not directly return to their stable state (but only after moving away from it first) and 2) an organism reacts to a variable with which it is not directly in contact; co-ordination will first occur between part and part and then between part and environment and reciprocally between environment and part and then between part and part: ‘Here we should notice that the co-ordination of the behaviour of one part with that of another part not in direct contact with it is simply an elementary property of the stable system’ (p 70). NB: this is the mechanism of coupled dancing landscapes: the transmission of information through components of the system to others and interactions with the environment.

5/14 The problem can be stated as: ‘A determinate machine changes from a form that produces chaotic, unadapted behaviour to a form in which the parts are so co-ordinated that the whole is stable, acting to maintain its essential variables within certain limits..’ (p 70).

Chapter 6. Parameters.

6/1 A system is formed by selecting some variables out of all variables; forming it, variables are divided into two classes: within the system and without. Their relation to the system is different.

6/2 Given a system, a parameter is a variable not included in it, a variable is within the system. The closeness of relation between a parameter and a system varies from no effect to a large effect.

Parameter and field

6/3 A change in the value of an effective parameter changes the field. A system can show as many fields as the total number of combinations of values of its parameters.

6/4 A change in a variable leads to a change of state; this is a change that IS behavior. A change in a parameter leads to a change of field; this is a change of behavior.

Stimuli

6/5 Many stimuli can be represented as a change of value of a parameter; the effect of a sharp parameter change is that the field briefly changes whereby the point is carried away from its initial position. When the parameter is returned to its original value, the original field is restored and the representative point is away from its initial position, on another line of behavior and as it returns to its initial position (or another equilibrium point if multiple exist), and it responds. This is called an impulsive.

Joining dynamic systems

6/6 Joining occurs whenever one system has an effect on another, such as communication, forcing, and signaling. To join systems A and B such that A affects B, some parameters of B must become a function of the variables of A. If a joining is made in two directions, then feedback is set up between the two systems.

Parameter and stability

6/7 ‘Because a change of parameter-value changes the field, and because a system’s stability depends on its field, a change of parameter-value will in general change a system’s stability in some way’ (p 77). A change in a parameter substitutes the field; this leads to any change in behavior: stable or unstable, cyclic, single or multiple states of equilibrium. ‘..in a state-determined system, a change of stability can only be due to change of value of a parameter, and a change of value of a parameter causes a change in stability’ (p 78).

Equilibria of part and whole

6/8 If system A with variables u and v is joined with system B with variables x, y and z and the joint of A and B (with variables u, v, x, y, z) is in equilibrium, then the transition is from that state to itself. Given the constancy of its parameters x, y and z, the values of the variables of A are unchanged and conversely, given the constancy of the parameters u and v of B, its variables x, y and z remain constant also. A and B are both in a state of equilibrium as is their whole: ‘So, the whole’s being at a state of equilibrium implies that each part must be at a state of equilibrium, in the conditions provided (at its parameters) by the other parts’ (p 79). Conversely, if, given the values of their reciprocal parameters (the conditions given them by the other parts), A is in equilibrium and B is in equilibrium, then their whole is in equilibrium also.

6/9 If a single part of a whole is not in equilibrium, then it will again change, changing the conditions (the parameters) of the other parts and in turn start them moving again. Any part of the system can prevent the whole to enter a state of equilibrium, it has the power of veto over the states of equilibrium of the whole.

6/10 ‘..each part acts selectively towards the set of possible equilibria of the whole’ (p 79). NB: A smallest common denominator of all variables of the whole (the variables of all parts) detemines whether there can be some specific state such as an equilibrium.

Chapter 7. The Ultrastable System.

7/1 How does the kitten change from not having a mechanism to show no adaptive behavior to having one that does show adaptive behavior?

The implications of adaptation

7/2 In accordance with S. 3/11 and S. 4/14 (if the organism and the environment mutually affect each other’s stability, the system has feedback) the kitten and environment are to be considered as interacting. System and environment interact (have feedback) if they influence each other’s stability. R is a system that belongs to the organism and that acts when the organism reacts to a signal; the arrows between R and the environment and between R and the organism represent the motor and sensory channels. A change of parameters (represented by S) affect the behavior of the kitten; the change in S do not (directly) affect the environment; the number of distinct values of parameters S must be at least as great as the number of distinct behaviors of the kitten.

7/3 If the environment and R or both affect the essential variables of the organism, then its survival is at risk; the more interesting case being the external threat.

7/4 ‘To be adapted, the organism, guided by information from the environment, must control its essential variables, forcing them to go within the proper limits, by so manipulating the environment (through its motor control of it) that the environment then acts on them appropriately’ (p 82). R in this sense can be thought of as an organism trying to control the output of the environment, a black box the contents of which is unknown to it. The procedure to know the contents of a black box is to feed it input and to register the output; to do things to it and act in accordance with the way they affected the environment; the kitten can know the situation by proceeding by trial and error. This test procedure is a necessity in the case of a black bow, because it is the only way can the reuired information be obtained. From the viewpoint of success trial and error is a second rate method, but from the viewpoint of gaining information it ranks higher.

7/5 The essential variables are to have an effect on which behavior the kitten must produce for them to remain inside their limits; a channel must exist from the essential variables to the parameters S. The organism now has a motor output to influence the environment and two feedback loops: sensory input and a carrier of information whether the values of the essential variables are within their limits and it acts on parameters S: the first feedback plays a part within each reaction, the second determines which reaction will occur.

7/6 1) with essential parameters within their limits the overt behavior of R is such as follows from a parameter set is S1 and 2) with the essential parameters outside of their limits, the overt behavior of R is such as follows from a parameter set S2. The overt behavior changed such that S2 is not equal to S1: the different values at the essential variables led to different values of S; a change of essential variables has led to a change of parameters.

7/7 If a trial is unsuccessful then change behavior. If and only if an outcome is successful then retain the way of behavior.

7/8 This is necessary: ‘That is to say, any system that has essential variables with given limits, and that adapts by the process of testing various behaviours by how each affects ultimately the essential variables, must have a second feedback formally identical (isomorphic) with that described here’ (p 85).

The implications of double feedback

7/9 In what material form will the above mechanism necessarily show adaptive behavior?

7/10 –

7/11 The whole consists of two parts coupled: 1) R plus the Environment, and 2) the essential variables and S. The whole can only be in equilibrium if the parts are. S is in equilibrium if the essential variables are. The whole can have such states of equilibrium as allow states of equilibrium in both S and in the essential variables; S is at equilibrium only if the essential variables are within the given limits; if the whole is at some state and it goes to an equilibrium along a corresponding line of behavior, then the equilibrium is always an adapted one. This is a sufficient condition and together with S. 7/8, the necessary condition it is the solution to the original question.

7/12 Assume for sake of clarity that the variables in the environment and in R vary continuously and those in S vary discreetly.

Step-functions

7/13 – 7/18

7/19 Systems tend to show changes of a step-function form if their variables are driven far from some usual value. The nervous system may not be different in that respect.

Systems containing step-mechanisms

7/20 Can a machine be determinate and capable of spontaneous change?

7/21 A system with continuous variables A and B and step variable S can be said to be state-determined in one field. But the system of main variables A and B can be said to have as many kinds of behavior as the step-variable(s), in this case S, has (combinations of) values: ‘And if the the step-mechanisms are not accessible to observation, the change of the main variables from one form of behaviour to another will seem to be spontaneous, for no change or state in the main variables can be assigned as its cause’ (p 95).

7/22 and 7/23 By changing the value of the step function, the system transitions into different fields; each new field can have a new state of stable equilibrium as well as critical states. Once the system has entered a region where it is attracted to such a stable state, it will remain there. If the organism is displaced moderately from this region it will return to it, demonstrating instances of adaptation.

7/24 This field will therefore persist indefinitely. The trial and error exercise has proven bloody and exasperating, but it was successful for finding a stable solution in phase-space. This trial and error is efficient if the result is also used many times to increase performance.

7/25 ‘It should be noticed that the second feedback makes, for its success, no demands either on the construction of he reacting part R or on the successive values that are taken by S. Another way of saying this is to say that the mechanism is in no way put out of order if R is initially constructed at random or if the successive values at S occur at random. (The meaning of constructed at random’ is given in S. 13/1)’(p 97)

The ultrastable system (definition)

7/26 ‘Two systems of continuous variables (that we called ‘environment’ and ‘reacting part’) interact, so that a primary feedback (through complex sensory and motor channels) exists between them. Another feedback, working intermittently and at a much slower order of speed, goes from the environment to certain continuous variables which in their turn affect some step-mechanisms, the effect being that the step-mechanisms change value when and only when these variables pass outside given limits. The step-mechanisms affect the reacting part; by acting as parameters to it they determine how it shall react to the environment’ (p 98)

7/27 –

Chapter 8. The Homeostat.

8/1 The homeostat is a physical instance of an ultrastable system.

8/2 and 8/3 –

8/4 and 8/5 Diagram of immediate effects a) 12, b) 1→2→3→1. NB: how can an interaction as per Knorr Cetina be represented in a diagram of immediate effects? ‘The nervous system provides many illustrations of such as series of events: first the established reaction, then an alteration made in the environment by the experimenter, and finally a reorganisation within the nervous system, compensating for the experimental alteration. The Homeostat can thus show, in elementary form, this power of self-reorganisation’ (p107).

8/6 and 8/7 If the configuration of the main variables of an ultrastable system is such that their field is unstable, then the system will change the field such that the system becomes stable.

Training

8/8 The process of training in relation to ultrastability. All training involves punishment and or reward. In the required form punishment means (S. 7/19 and 9/7) that a sensory organ was stimulated causing a step-change causing the system to enter a different field. The operations following a reward are assumed to be similar than following a punishment (but they are more complex). The trainer a) plans the experiment deciding on the rules that should be obeyed and b) the trainer plays a part in the experiment and obeys the established rules: this part of the ‘training’ situation implies that the ‘trainer’ or some similar device is an integral part of the trained system. Consider this system Trainer Animal to be ultrastable; the step-mechanisms are assumed to be confined to the animal.

8/9 To say that the trainer has punished the animal is equivalent to saying that the system has a set of parameter values that make it unstable. ‘In general, then, we may identify the behavior of the animal in ‘training’ with that of an ultrastable system adapting to another system of fixed characteristics’ (p 115).

8/10 If it has to adapt to two alternating environments an ultrastable system will be selective for fields that adapt to both environments (the field that is terminal for one environment will be lost at the next change).

8/11 What will happen if the ultrastable system is given an unusual environment, namely an environment where some of the parameter values are unusual. The ultrastable system will always produce a set of step-mechanism values, which will in conjunction with the parameter settings, produce stability. If the parameters have unusual values, then so will the step-mechanisms lead to compensating values that are unusual in the same vein.

Some apparent faults

8/12 this model cannot match the richness of adaptations of higher animals in reality.

8/13 if the critical surfaces are not disposed in proper relation to the limits of the essential variables then the system may seek an inappropriate goal or may fail to take action.

8/14 this model cannot deal with sudden discontinuity.

8/15 sufficient time must elapse between the trials so the system has enough time to get away from the region of the previous, critical state.

8/16 Systems may encounter easy environments with few independent variables; in difficult environments the encounter many interlinked variables.

Chapter 9. Ultrastability in the Organism.

9/1 Some further considerations concerning the relation between the organism and the theoretical construct more specifically as per Figure 7/5/1.

9/2 When one real machine is examined by the observer with a variety of technical methods, it can give rise to a variety of systems and of diagrams of immediate effects; sometimes two methods give rise to the same diagram (of IE): When this happens we are delighted, for we have found a simplicity; but we mustn’t expect this to happen always’ (p 122). Physical systems of which the design in some way resembles Figure 7/5/1 are not the only pattern; ‘for there are also systems whose parts or variables have no particular position in space relative to one another, but are related dynamically in some quite different way. Such occurs when a mixture of substrates, enzymes, and other substances occur in a flask, and in which the variables are concentrations. The the ‘system’ is a set of concentrations, and the diagram of immediate effects shows how the concentrations affect one another. Such as diagram, of course, shows nothing that can be seen in the distribution of matter in space; it is purely functional. Nothing that has been said so far excludes the possibility that the anatomical-looking Figure 7/5/1 may not be of the latter type. We must proceed warily’ (p 123). NB; this points at auto-catalytic systems: apparently they can be ultrastable systems; however Maturana and Varela rule them out as AP systems; this is a conseuence of their lack of topological structure. Auto-catalysis can be ultrastable but it can not be autopoietic; this means that auto-catalytic systems can be adaptive at some point for a finite period, but they cannot be adaptive for an infinite period.

9/3 –

Step-mechanisms in the organism

9/4 What to look for? For instance not: where to look, because that implies they are located somewhere – anatomically or in another way not applicable to the variable.

9/5 – 9/7 –

A molecular basis for memory?

9/8 – 9/9 –

Are step-mechanisms necessary?

9/10 Does evidence exist that the process of adaptation implies the existence of step-functions?

9/11 The way a system is observed, for instance the time lapse (micro-seconds, years) of the observation of a system is important for the categorization of the system as a step-function.

9/12 The behavior of a step-function is simple compared to the behavior of a full-function (continuous?); not every real object can be made to show such simple behavior; to say that something can show step-function-type behavior is unconditionally true; if a three dimensional system can be shown to show behavior in a field on two two-dimensional planes then this is special, because not all systems show this characteristic.

9/13 The nervous system often shows some persistence in its behavior: make a trial, persist for some time, make another trial, persist again &c. The shown behavior is less than fully complex by a full-function; every trial represents a field, each field persists for some time and so the behavior can be said to be discreet. Full functions could not represent this discrete character (from trial to trial) and so that they may be s represented is meaningful restriction on their nature. ‘If we now couple this deduction with what has been called Dancoff’s principle – that systems made efficient by natural selection will not use variety or channel capacity much in excess of the minimum – then we can deduce that when organisms regularly use the method of trials there is .. evidence that their trials will be controlled by material entities having (relative to the rest of the system) not much more than the minimum variety. There is therefore strong presumptive evidence that the significant variables in S (of Figure 7/5/1) are step-functions, and that the material entities embodying them are of such a nature as will easily show such functional forms’ (p 130). NB: can this be said of firms also? Is Dancoff’s principle also relevant for social systems, namely for all evolving systems with selection?

Levels of feedback

9/14 Are the two channels of feedback of Figure 7/5/1 relevant in reality? a) an impulsive disturbance to the main variables of the system (fire flares up) and the adaptive system reacts (kitten moves away a bit), and b) a parameter to the whole system changes (from a value it had during many impulsive perturbations). ‘The impulse made the system demonstrate its stability, the change at the parameter made the system demonstrate (if possible) its ultrastability. Whereas the system demonstrates, after the impulse, its power of returning to the state of equilibrium, it demonstrates, after the change of parameter-value, its power of returning the field (of its main variables) to a stable form’ (p 131). The latter are of a step-functional form. ‘When the disturbances that threaten the organisms have, over many generations, had the bi-modal form just described, we may expect to find that the organism will, under natural selection, have developed a form fairly close to the ultrastable, in that it will have developed two readily distinguishable feedbacks’ (p 131).

The control of aim

9/16 The systems discussed so far sought constant goals through the development of a variety of fields. If he critical states’ distribution in the main variables’ phase-space is altered then the ultrastable system will be altered in the goal it seeks; the ultrastable system will always develop a field of which the representative point is kept within the region of the critical states.

9/17 Starting at Figure 7/5/1: 1) the environment is given arbitrarily 2) the channel by which the environment affects the essential variables is given arbitrarily 3) the essential variables and their limits are determined genetically (species’ characteristics) 4) the reacting part R has three inputs: a) sensory input from the environment (quasi-continuous change) b) the values of its parameters in S (genetic, change between trial and trial) and c) parameters developed during embryonic development (changes once in a lifetime) and 5) the relation between the essential variables and the variables in S, namely that the essential variables force the variables in S to change if their values are threatened to go outside their limits; and not to change otherwise (changes ad-hoc and this can only be based on genetic sources).

9/18 ‘For ultrastability to have been developed by natural selection, it is necessary and sufficient that there should exist a sequence of forms, from he simplest to the most complex, such that each form has better survival-value than that before it’ (p 135). NB: this implies a ratchet.

9/20 ‘To some extent, the generality of the ultrastable system, the degree to which it does not specify details, is correct. Adaptation can be shown by systems far wider in extent than the mammalian ad the cerebral, .. . Thus the generality, or if you will, the vagueness, of the ultrastable system is, from that point of view, as it should be’ (p 137) NB: how wide, can it include the workings of social systems?

Chapter 10. The Recurrent Situation.

10/1 So far the basis; now complications can be added to better model living systems. It seems that living systems when adapting follow a path that is not so far from the path involving the least energy, time and risk.

10/2 Let’s return to first principles. Success or adaptation to an organism means that, in spite of the world showing its worst side, the organism lives to reproduce at least once. What the world did to the organism can be regarded as a Grand Disturbance and the response of the organism as the Grand Response to eventually lead to the Grand Outcome, success or failure to reproduce. The partial disturbances (the whole of which forms the GD) and the partial responses (the whole of which forms the GR) can be interrelated to any degree, zero to complete. In the latter case, the GO is a function of all the partial responses forming a very complex relation between GO and GR. This is rare in reality, because the GD of the real world contains a lot of constraint: ‘Thus the organism commonly faces a world that repeats itself, that is consistent to some degree in obeying laws, that is not wholly chaotic. The greater the degree of constraint, the more can the adapting organism specialise against the particular forms of environment that do occur. As it specialises so will its efficiency against the particular form of environment increase.’ (p 139). NB: this is reminiscent of Oudemans’ increasing restrictions or limitations on the following configurations, it reminds of Wolfram, namely with regards to the units of computation that will be equal as well as the powers of perception of people that are of the same order of complexity as the processes they are trying to perceive and analyze (and that themselves are produced by). A few lines previous: ‘Were it common, a brain would be useless (I. To C. 13/5). In fact, brains have been developed because the terrestrial environment usually confronts the organism with a GD that has a major degree of constraint within its component parts, of which the organism can take advantage’ (p 139). This attributes a natural role to the brain: to ferret out the regularities in the environment of the organism. How is the analogy brain : organization with firm : organization?

10/3 –

The recurrent situation

10/4 Consider the case in which disturbances are sometimes repetitive; in those cases if a response is adaptive on the disturbance’s first appearance, it is also repetitive on later appearances. This is not automatic, because in some cases a disturbance’s appearance depends on the number of times it has appeared before. In this chapter disturbances are studied that are independent of where it appears in the sequence of previous appearances; the only condition is that if a response is adaptive to the first appearance it also is on later occasions. The advantage is that exploratory trial and error is required only at the first appearance and not at the later appearances. If an organism can adapt to multiple (different kinds of) disturbances, then these can be considered multiple environments; an extension of the environments it can adapt to, means an increase of its chances of survival: this organism can accumulate adaptations.

10/5 The alternative is that the system does not jump to conclusions; in a pré-bait kind of situation it would perform better than the rat. But if the environment is constrained in its possible behaviors, then the system is at a disadvantage.

10/6 and 10/7 –

The accumulator of adaptations

10/8 Step mechanisms can be thought of as information about the way that the essential variables of an ultrastable system have behaved in the past. They must be split into classes and they cannot belong to the same set, because on the occurrence of some new event, the stored information will be overwritten; separate stores must exist for different kinds of occurrences.

10/9 et it be given that the organism adapts to P1 initially in a process of trial and error and if P1 occurs a second time it adapts at once. The same counts for P2; from this is follows that te step-mechanisms must be divided into non-overlapping sets, that the reactions to P1 and P2 are due to their particular set. The presentation of the problem value of P) must determine which set is brought to bear, while the remainder is left inactive.

10/10 The subsets of S need not be efficiently organized and can be random processes. A mechanism for a gating mechanism (the selection of appropriate subset for the problem at hand) is presented in 16/13. The basic requirements are easily met. Even thought eh arrangement may not be as tidy as the abstract design here.

10/11 In many cases a specific sequence exists between various situations. The design of Figure 10/9/1 caters for this naturally, as P1 is followed by P2 &c (first do not touch the teapot, then don’t wipe the jam, don tip over the milk jar, then reach for the cookie). Only certain fragmented situations allow this kind of environment; if it is then a mechanism such as presented above improves the organism’s adaptive capabilities. How the entire regulatory device of an organism develops depends on the situations of the environment presented to it.

10/13 The mechanisms of adaptation are not due to star dust or excellent cerebral design; adaptivity can be a ‘dumb’ process which can occur in a non- neurophysiological environment such asa a computer.

Chapter 11. The Fully Joined System.

11/1 A basis version of the ultrastable system can work; not consider some complications. the first of which is a large number of components.

Adaptation time

11/2 Suppose the Homeostat is made up with 1,000 units (instead of 4) and suppose that all but 100 are shorted out, the order of magnitude of essential variables in a living organism. Because they are essential, they must all remain in their limits; suppose that the step-mechanisms give a 50% chance to each variable to stay within limits and an independent 50% chance to move outside the limits. How many trials are necessary on the average before adaptation? At this rate the probability is (½)¹⁰⁰ ; at 1 pr second this implies that it will take approximately 1022 years to arrive at a situation where all are within limits; this in fact means very close to never; and yet the human brain can do this in a reasonable period of time, does it use the ultrastable mechanism? ‘It can hardly be that the brain does not use the basic process of ultrastability, for the arguments of S. 7/8 show that any system made of parts that obey the ordinary laws of cause and effect must use this method’ (p149).

11/3 and 11/4 similar outcomes as 11/2

11/5 The processes are so time consuming because partial successes go to waste with regards to the establishment of the Grand Success. Consider a case where it isn’t: N events, independent chance of success of p, A covering fraction p of the circumference of each wheel and B the remainder, 1 spin takes 1 second: case 1) all N wheels are spun and when all N are A it stops (this requires (1/p)N spins, (1/2)1000 if N=1,000, p=2), case 2) the first wheel is spun until it is A, then the second wheel is spun until it is A and so on until all are A (this requires N/p spins, 1,000/p if N is 1,000, p=2) and case 3) of all the wheels initially spun, the ones that are A remain, the remaining contingent is spun again and the ones that are B are spun again &c (this requires 1/p spins, if N=1,000, p=2). Case 1 requires 10293 year, case 2 requires 8 minutes and case 3 mere seconds.

11/6 Case 2 and case 3 can use partial successes to built the Grand Success where case 1 cannot. ‘The examples show us the great, the very great, reduction in time taken that occurs when the final Success can be reached by stages, in which partial successes can be conserved and accumulated’ (p 152).

11/7 If the cases are applied to the selecting of a number registration on cars ending 1, then 2 then 3 up to and including 9, then using the method of case 1 this requires 10 billion cars to pass by, using case 2, 50 suffice.

11/8 ‘A compound event that is impossible if the components have to occur simultaneously may be readily achievable if they can occur in sequence or independently’ (p 153).

11/9 The difference between the Homeostat and a living organism is exactly that the organism does not engage in trials until all comes right at once, but instead while making trials, achieves and retains (accumulates) successes as it goes, until the Grand Success is possible. A combination lock is an example where human organism and Homeostat fail alike.

Cumulative adaptation

11/10 The organism has many essential variables; the organism manages to reach adaptation fairly quickly; what can be deduced from this? ‘It has thus been shown that, for adaptations to accumulate, there must not be channels from some step-mechanisms (e.g. S3) to some variables (e.g. M12), nor from some variables (e.g. M3) to others (e.g. M12). Thus, for the accumulation of adaptations to be possible the system must not be fully joined. .. This is the point. If the method of ultrastability is to succeed within a reasonably short time, then the partial successes must be retained. For this to be possible it is necessary that certain parts should not communicate to, or have an effect on, certain other parts’ (p 155). NB: this is a very important argument for the way the system retains information in this case so as to get work done in a reasonable time-frame. But why should it be required that it does this in a reasonable time-frame? Brains have developed for there are regularities in the environment that it can anticipate; had there been no regularities ata ll then there would not have been a need for a brain. Now that there is a brain, all it needs to do is to anticipate the event before it occurs; if it does not do so then it is useless after all and the world would appear to be just as random as it does without any regularity. I reckon that this is what Wolfram refers to if he suggests that the processes that developed people’s brains are the same processes that occur in nature.

11/11 Because we worked with systems that were assumed to be richly connected there could not be a discussion about integration or mechanisms that work in separate parts: ‘The reacting parts and the environments that we have discussed have so far been integrated in the extreme’ (p 156). NB: this is where the channels M sit. This Statement seems to bear a relation with the (Wagensberg) interface that the system has with the environment.

11/12 The Homeostat is too well integrated, too much cross-joined, and as an ultrastable system takes too long to adapt: to what level should it be cross-joined? The separation into parts and the union into a whole are extremes on the scale of connectedness; in the above sense adaptation requires independence of unrelated activities as well as integration of related activities. NB: this refers to an example of a driver keeping a car on the road while clutching and changing gears.

11/13 ‘They do this by developing partial, fluctuating and temporal independencies within the whole, so that the whole becomes an assembly of subsystems within which communication is rich and between which it is more restricted’ (p 157).

Chapter 12. Temporary Independence.

12/1 Physical separation or connection is useless as a criterion of independence.

12/2 No relation necessarily exists between the direction of control and the direction of the flow of matter or energy if the situation is such that all the system’s parts are freely supplied with energy.

Independence

12/3 X and Y are variable sin a system. Set X and observe the value of Y. Reset X and reset Y. Set X to a value different from the first trial. Observe Y. If the value of Y is now the same as it was the first time then Y is independent of X. Dependent means ‘not independent’; the concept needs 2 transitions.

12/4 If Y is independent of X regardless every possible value of the other variables, then Y is unconditionally independent of X. Y is independent of X in every field of the system. However, this is possible without conditions only if the system is suitably simple, else additional information must be provided.

12/5 Because independence varies one system can give a wide variety of diagrams of immediate effects.

12/6 If X is independent of Y and Y is not independent of X then X dominates Y.

12/7 Of every variable of an entire system A is independent of every variable in system B then system A is independent of system B. A may in addition dominate B and a mutual dependence can exist.

12/9 The definition makes independence dependent on one time, step, click, or infinitesimal time if continuous. If Z depends on Y and Y depends on X, then if X changes then Y changes and, one step later Z changes. So Z depends on X delayed. The diagram of ultimate effects shows the dependencies if time is allowed for all the effects to work around the system.

The effects of constancy

12/10 If component C depends on component B and component B depends on component A and A, B and C all contain various variables, then to make A and B independent requires that the variables in B are null-functions, implying separation at B by a wall of constancies. This also implies that this is not necessarily the case at every field: A and C can be sometimes joined and sometimes independent.

12/11 –

12/12 The diagram of ultimate effect can take a different shape if one or more of the variables in the system are constant; this includes the reversal of dominancy between variables.

12/13 –

The effects of local stabilities

12/14 For a system to have temporary independencies it must have variables that are temporarily constant. Any subsystem that is constant is in a state of equilibrium. If its surrounding parameters are constant then the subsystem has a state of equilibrium in the corresponding field; if it stays constant if the parameters change, then that is an equilibrium state in all the fields occurring. Constancy in a subsystem implies it is in an equilibrium state; constancy in the presence of small disturbances implies stability. Constancy, equilibrium and stability are closely related.

12/15 These kind of systems are common, see S. 15/2; two types worth noting are: 1) with a probability p some randomly selected state of a system is equilibrial and 2) all states are stable if some parametric value is below a threshold and few or none are if it exceeds that value. The latter can easily generate varying connections between variables by readily giving constancy.

12/16 Consider ABC, then if B is equilibrial for all values from A and C, then A and C are independent. If however, B is equilibrial for some and not for other values from A and / or from C, then A and C will sometimes be and sometimes not be dependent: ‘Thus we have achieved the first aim of this chapter: to make rigorously clear, and demonstrable by primary operations, what is meant by ‘temporary functional connexions’, when the control comes from factors within the system, and not imposed arbitrarily from outside’ (p 169). NB: this statement is relevant with regards to autopoietic systems: the control lies within the system. The difference is that adaptive systems are adaptive to their environment at once and not necessarily in an evolutionary process a/p autopoiese.

12/17 ‘The same ideas can be extended to cover any system as large and richly connected as we please’ (p 169). Constancies, in other words, can cut a system to pieces.

12/18 –

Chapter 13. The System with Local Stabilities.

13/1 Rigor and precision are possible examining the kinds of systems that show the above behavior; it is required to define a set with certain properties and the statements must be precise and concern the properties of the set: we are now not talking about individual systems but about a set of systems. NB: how is this relevant to the definition of individual firms or of a set of firms with some specific properties? The discussed systems are random in the sense that they are generic with typical properties such as to arrive at a precise deduction about the defined set of systems.

13/2 A polystable system is any system whose parts have many equilibria and that has been formed by taking parts at random and joining them at random.

13/3 –

13/4 In a state-determined system, if a sub-system has been constant and it starts to show change, then it can be deduced that a change must have occurred in one or more of its parameters. If a sub-system that is a part of a state-determined system, it is stable, and its parameters (variables of other subsystems) are constant, then it is trapped in equilibrium; only an external source can allow it to change.

Progression to equilibrium

13/5 –

13/6 let i be the number of components in a system that is in equilibrium and let n be the number of components. If i=n then every component is in equilibrium and the whole is also. If i<n and n-i components are not in equilibrium and they will assume a new value at each step and a new state of the whole appears.

13/7 In a particular system its behavior is determinate if the system and its initial state is given. In a set of systems this is not the case, except at the two extremes, namely richly connected and hardly connected.

13/8 How will i behave if every component is connected to all others, meaning n(n-1) arrows in the diagram of immediate effects? If p is independent and unequal 1 and n is large then the probability that the whole is in equilibrium is small and i will be approximately np. The line of behavior starts a random walk and the systems meets and equilibrium in case i by chance becomes n. The time to get there is of geological (astronomical) timescales.

13/9 A special case is when i is close to n: at the next step, its value will average away from n and so the number of elements in equilibrium decreases. Such a system will fall back to an average state; it is typically unable to retain partial or local successes.

13/10 Consider a system will large n, independent p and the elements not much connected. This resembles the situation where p is very close to 1: many elements remain in equilibrium for long periods of time; they are constant and leave large areas in the system isolated, in effect this means they are not much connected. Consider a case where none of the n variables is connected with any of the others: this is a system only in the nominal sense; once in equilibrium an element stays in equilibrium because it cannot be disturbed. So all elements that contribute to i (set of elements in equilibrium) at an earlier state, must contribute to i at a later state; and as a consequence the value of i cannot fall with time (or clicks). This type of system goes to its final state of equilibrium progressively in the sense of Case 3 of S. 11/5 and the time the system takes is not excessively long.

13/11 The more interesting kind is the systems that near the limit of disconnection, where i has the tendency to move to n: ‘This is the sort of system that, after the experimenter has seen i repeatedly return to n after displacement, is apt to make him feel that i is ‘trying’ to get to n’ (p 177).

13/12 –

13/13 Connection is an important determinant for the way in which a system goes to equilibrium; when the connection is rich then the behavior tends to become complex, the time to reach n is long and if some high i is reached then it cannot retain the excess over the average. When the connection is poor (either by few joints or by many constancies), the line of behavior is short and the time lapse for the whole to arrive at equilibrium is short. When a state is met where a large number of variables are stable, the excess of the average is retained for a time; local equilibria are accumulated and equilibrium for the whole is progressed.

Dispersion

13/14 This is the phenomenon that, given arbitrary sections of the behavior of a system, the variables that are active in a previous section are different from the active variables in a later section; the sections can come from the same line or from different lines. The essential feature is that even if the sections differ in one or few variables, namely their dependency, the changes that result may distribute the activations to different sets of variables, namely to different places in the system: ‘Thus the important phenomenon of different patterns (or values) at one place leading to activations in different places in the system demands no special mechanism: any polystable system tends to show it’ (p 179).

13/15 If the two places are to have minimal overlap then the parts should have almost all their states equilibrial; then the number active will be few: if the fraction is r, then the fraction of the overlap is r². If the proportion of the equilibrial states is nearly 1, then r is correspondingly small. ‘Thus the polystable system may respond, to two different input states, with two responses on two sets of variables that may have only small overlap’ (p 179).

13/16 Dispersion is used widely in the sense organs and in the nervous system. NB: it is possible to translate this to the workings of organizations.

13/17 ‘The fact that neuronic processes frequently show threshold, and the fact that this property implies that the functioning elements will often be constant (S. 12/15) suggest that dispersion is bound to occur, by S. 12/16’ (p 180).

Localisation in the polystable system

13/18 How will the set of active variables be distributed over the whole set? The answer to whether activity is restricted to a certain variables only is ‘yes’; the answer to whether the variables occur in no simply describable way is ‘no’: the variables can be determined from local circumstances but the outcome on a global scale is random.

13/19 ‘The set of variables activated at one moment will usually differ from the set a later moment; and the activity will spread and wander with as little apparent orderliness as the drops of rain that run, joining and separating, down a window-pane. But though the wanderings seem disorderly, the whole is reproducible and state-determined; so that if the same reaction is started again later, the same initial stimuli will meet the same local details, will develop into the same patterns, which will interact with the later stimuli as they did before, and the behavior will consequently proceed as it did before’ (p 182). This describes the dichotomy between local behavior and global behavior and how a pattern must occur and how it can be repeated because of its deterministic character. It is stable in the face of the removal of material: ‘For in a large polystable system the whole reaction will be based on activations that are both numerous and widely scattered. And, whole any exact statement would have to be carefully qualified, we can see that, just as England’s paper industry is not to be stopped by the devastation of any single county, so a reaction based on numerous and widely scattered elements will tend to have more immunity to localised injury than one whose elements are few and compact’ (pp. 182-3).

13/20 –

Chapter 14. Repetitive Stimuli and Habituation.

14/1 Two reasons: 1) Exercise in discussing polystable systems in terms that are both general and precise and 2) the behavior of a system in equilibrium is often perceived as ‘boring’ in the sense of a run down clock. However, when a complex system nears an equilibrium this involves complex (and interesting) relations between the states of the various parts of the observed system. This chapter shows how a system running to equilibrium under a complex and repetitive input produces interesting behavior.

14/2 Definition: when there are many states of equilibrium in a field and every line of behavior terminates at some state of equilibrium, the lines of behavior collect into sets, such that the lines in each set terminate into one common point or cycle of termination; the field can be divided into regions such that one region contains one and only one state or cycle of equilibrium to which each line of behavior in the region eventually comes; this region is called a confluent (this is a basin of attraction DPB). Important properties of the confluent are: a) a line cannot leave it if arepresentative point is released within it, and b) it will go to the equilibrium or cycle, where it remains sso long as the parametric conditions remain unchanged: ‘The division of the whole field into confluents is not peculiar to machines of special type, but is common to all systems that are state-determined and that have more than one state of equilibrium or cycle’ (p 185).

Habituation

14/3 Impulsive parametric changes can bring the system into a new confluent, given sufficient delay between the applications for the line of behavior to find the equilibrium. There it can again be brought to another and another, or it can be trapped inside the confluent; some confluents can hold the line inside while others can’t: the process is selective.

14/4 –

14/5 The polystable system is selective, because at some point the line will be transported to a confluent where the stimulus cannot shift it from. ‘And, if there is a metric and continuity over the phase space, this distance that the stimulus S finally moves the point will be less than the average distance, for short arrows are favoured. Thus the amounts of change caused by the successive applications of S change from average to less than average. .. What we should notice is that the outcome of the process is not symmetric. When we think of a randomly assembled system of random parts we are apt to deduce that its response to repetitive stimulation will be equally likely to decrease or to increase. The argument shows that this is not so: there is a fundamental tendency for the response to get smaller. .. If the responses have any action back on their own causes, then large responses tend to cause a large change in what made them large; but the small only act to small degree on the factors that made them small. Thus factors making for smallness have a fundamentally better chance of surviving than those that make for largeness. Hence the tendency to smallness’ (p 187).

14/6 –

14/7 ‘The argument of this chapter suggests that it is to be expected to some degree in all polystable systems when they are subjected to a repetitive stimulus or disturbance’ (p 189).

Minor disturbances

14/8 If the arrow S does not represent a single response but a distribution of responses, inside and outside of the confluent. The answer is roughly the same. The confluent who’s arrows go far is left by the representative point and the ones who’s arrows remain in its own confluent act as a trap. Thus the polystable system selects the equilibria that are immune to the actions of small irregular disturbances (and will be destroyed by large field shifts).

14/9 –

14/10 Bizarre fields are selectively destroyed when the system is subjected to small, occasional, and random disturbances. ‘Since such disturbances are inseparable from practical existence, the process of ‘roughing it’ tends to cause their replacement by fields that look like C of Figure 14/9/1 and act simply to keep the representative point well away from the critical states’ (p 191). NB: this resembles Wolfram’s remark that selection smooths out the edges and polishes existing order to a workable and simpler design.

Chapter 15. Adaptation in Iterated and Serial Systems.

15/1 Let us resume the task of considering how a large and complex system can adapt to a large and complex environment without taking almost an infinite time to do it. The facts are as follows: 1) the ordinary terrestrial environment has a distribution of properties very different from what was assumed earlier (S. 11/2), 2) against the actual distribution of terrestrial environments, the process of ultrastability can give adaptation in a reasonably short time, 3) when environment gets more complex then the time of adaptation of an ultrastable system goes up, not only theoretically but in real living systems, and 4) when the environment is excessively complex and closely-knit, the theoretical ultrastable system and the living system fail alike.

15/2 An ordinary terrestrial environment has these features: 1) many of the variables are constant over considerable amounts of time such that they behave as part-functions, 2) most variables of the environment have an immediate effect on only a few of the totality of variables; this operates as a system of part-functions. ‘A total environment, or universe, that contains many part-functions, will show dispersion, in that the set of variables active at one moment will often be different from the set active at another. The pattern of activity within the environment will therefore tend, as in S. 13/18, to be fluctuating and conditional rather than invariant’ (p 195). NB: what are (examples of) these constants and temporary or quasi relations between variables and variables and variables and parameters? In my mind’s eye it is visualized as blocks of temporarily invariant situation where interaction between the e.g. an animal and the environment occurs. How does this view on interacting relate to the view of Knorr-Cetina, namely the establishment of a third body? As an interaction with an environment takes place, now this set is active, now that set. If some set is active for a long time and others sets are inactive and inconspicuous, then the observer may call the first part the environment. And if later the activity changes to another set, he may call that also a (second) environment.

15/3 Previews to cases: 1) a whole of which the connections between the parts is zero 2) subsystems are connected in a chain 3) subsystems are connected unrestrictedly in direction so that feedback can occur and 4) chapter 16: systems with non-rich connections in all directions; these kinds of systems can be thought of as constructed from sub-systems that are internally richly connected with feedback loops between them that are much poorer.

Adaptation in iterated systems

15/4 Consider from a field of interactions between elements one configuration where some feedback loops are closed; the entire system contains a number of subsystems; functionally this represents an organism dealing with its environment by several independent reactions. The whole is said to consist of iterated systems. If i is the number of subsystems in equilibrium then i will not fall but can only rise as a consequence of S. 13/10.

15/5 Whether the feedbacks are first-order or second-order is irrelevant; if the system has essential variables and step-mechanisms it will go to equilibrium and the system’s adaptation will develop cumulatively and progressively. The process of trial and error takes place in the different subsystems independently of the developments in the others.

15/6 The time it takes for the iterated set to become adapted is of the order T3; this means of the order of one of its subsystems.

15/7 If the components are not connected then each can adapt independently (parameters are constant) and the time of the whole to equilibrium is of the order T3. If two components are connected then one cannot reach equilibrium until the other has; the time to reach equilibrium is of the order 2 x T3 if the step-mechanisms of the component systems are connected and of the order T1 (almost indefinite) if the systems’ reaction parts are connected: a joining from the reacting part of A to that of B can have the effect of postponing the whole’s adaptation almost indefinitely.

Serial adaptation

15/8 As per S. 15/3 the second stage of connectedness occurs when parts of the environment are joined as a chain: ‘Thus we are considering the case of the organism that faces an environment whose parts are so related that the environment can be adapted to only by a process that respects its natural articulation’ (p 200).

15/9 As an illustration: the environment allows only that an organism learns to walk before learning how to run; additional examples: falcons, chimpanzees, children.

15/10 Part A, the avoiding system: objects are noticed by the organism via skin and eyes; objects are handled via muscles. Part B, the feeding system: the blood glucose level is communicated to the brain; the brain instructs the muscles to get food; the muscles get food. As a consequence of a process of dispersion A and B may share variables (brain, muscle). A and B interact. Assume that no step-changes in A occur while adaptation of B occurs; the adaptation is now in Part B alone, interacting with ‘an environment’ A. Whatever the particularities of the conditions of the domain of A, B will be forced to adapt within the scope defined by them. NB: this is relevant to the case of a firm: everything but the firm’s memeplex is external to it; the memeplex interacts with those things such as to adapt to them; these include elements traditionally considered internal to the firm such as employees. PS: if viewed anatomically, the (sets of) variables are grouped differently from a functional view: anatomically, two variables are external to the system, functionally, all of the variables are part of the whole system and organized into an adapting part (B) to which A is the environment. Now, given that adaptations in A only occur in between step-changes in B, collisions between A and B will not occur.

15/11 In a sequence of nested sub-systems, every sub-system will be affected (and will adapt to) every disturbance in every (sub-) system in the chain it is dominated by as well as every reaction to those disturbances. If the channel capacity of the connections is high then so much disturbance is transmitted to the sub-systems that their adaptation is postponed indefinitely. If the capacity is low then the adaptation is so rapid that C, though affected by B, may be unaffected by disturbances in A and so on. In this way, if the connections get weaker then the adaptation tends to be more sequential, first A thenn B and so on, and limiting to the iterated set. If sequential the behavior tends to Case 2 (turn each wheel until A, then turn the next wheel &c.) and the time will be of the order T2. ‘Thus adaptation, even with a large organism facing a large environment, may be achievable in a moderate time if the the environment consists of sub-systems in a chain, with only channels of small capacity between them’ (p 204).

Chapter 16. Adaptation in the Multistable System.

16/1 Consider sub-systems of the environment that are connected unrestrictedly in direction so that feedback occurs between them. The type may vary according to the amount of communication between sub-system and sub-system, of special interest are: 1) it is near maximum and 2) the amount is small.

The richly joined environment

16/2 In this case, the division into subsystems ceases to have a basis.

16/3 Examples of large richly connected systems are rare, as the terrestrial environment is highly subdivided: combination lock, mathematical examples where the behavior of every sub-system depends on the behavior of all others.

16/3 ‘Thus the first answer to the question: how does the ultrastable system, or the brain, adapt to a richly joined environment: is – it doesn’t’ (p 207).

The poorly joined environment

16/5 This was shown in S. 15/2 to be the case in most terrestrial environments: sub-systems affect each other only occasionally, weakly, or via other systems. If the degree of interaction varies, at the lower end is the iterative system of S. 15/4, at the upper end is the richly connected systems of S. 16/2.

16/6 What is now assumed: 1) the environment consists of large numbers of sub-systems that have large numbers of states of equilibrium as per S. 15/2, 2) whether because of few connections or because equilibria are common, the interactions are weak, 3) the organism coupled to this environment will adapt by the method of ultrastability and 4) the organism’s reacting part is itself divided into sub-systems between which there is no direct connection: each sub-system is supposed to have its own essential variables and second order feedback.

16/7 ‘In other words, within a multistable system, subsystem adapts to subsystem in exactly the same way as animal adapts to environment. Trial and error will appear to be used; and, when the process is completed, the activities of the two parts will show co-ordination to the common end of maintaining the essential variables of the double system within their proper limits. Exactly the same principle governs the interactions between three subsystems. If the three are in continuous interaction, they form a single ultrastable system which will have the usual properties’ (p 210). NB: this appears to explain how social behavior of people gets to be correlated.

16/8 –

16/9 What modifications are required to allow that in a multistable system the number and distribution of the sub-systems active changes at each moment? Adaptation of the whole will occur, whether dispersion occurs or not. Dispersion destroys the individuality of the sub-systems. If the adaptation of the multistable system is tested by displacing its representative point then the system’s sub-systems will be found to react in a way co-ordinated to some common end. ‘But though co-ordinated in this way, there will, in general, be no simple relation between the actions of subsystem on subsystem: knowing which subsystems were activated on one line of behaviour, and how they interacted, gives no certainty about which will be activated on some other line of behaviour, or how they will interact’ (p 213). In other words: what is sub-system A and what is B can change from moment to moment.

16/10 NB: the structure changes from moment to moment, the content and the process interchange. And in addition, no anatomical or histological existence may exist of these functionalities.

16/11 What is the time required of these kinds of multistable systems to adapt? This largely depends on the richness of connection of the systems.

Summary If the actual richness is not high then the time required to reach adaptation is reasonable in practical terms.

Retroactive inhibition

16/12 Figure 7/5/1 breaks up into a multistable systems like Figure 16/6/1. Questions: 1) can a multistable system take advantage of a recurring situation? As a reminder: polystable systems have dispersion; the number of active variables they have in common is limited; a different line of behavior results in changes in their respective sets, which may or may not overlap. In the case of a multistable system, the outcomes that would be the same given two different disturbances sufficiently separated, is P1 x P2. ‘Thus the multistable system, without further ad-hoc modification, will tend to take advantage of the recurrent situation’ (p 216).

16/13 If the disturbances vary widely then the multistable system tends to direct the activations to widely different sets of step-mechanisms providing a functional equivalent of the gating mechanism of S. 10/9.

16/14 If two disturbances are nearly equal, then the overlap of the activated sets is larger; chances increase that the effects of the last disturbance destroys the effects of the first one. New learning destroys old learning: retroactive inhibition. In a multistable system the more the newer stimuli resemble the old, the more will the new upset the old. This is matched by a similar tendency in the nervous system.

16/15 Adaptability or the power to accumulate adaptations means that later adaptations shall not be destructive to earlier ones; this is the opposite of retroactive inhibition meaning that later adaptations shall be destructive to earlier ones. A brain model should show both. The homeostat shows retroactive inhibition maximally, iterated systems with a gating-mechanism shows adaptive behavior maximally and the multistable system of some intermediate degree of connection can show both. The latter will resemble the living organism.

Chapter 17. Ancillary Regulations.

17/1 Some objections (other than processing time) to the thesis that the brain is to a large extent multistable are discussed.

Communication within the brain

17/2 Why are in the multistable system and its Figure no connections between the parts of the brain, namely in the lower part, the organism; why are the connections in the environment?

17/3 Dispose of the idea that the more communication within the brain, the better. Three ways in which a function can be successful only if certain pairs of variables are not allowed to communicate or only to a certain degree: (1) in S. 8/15 it was shown that the essential variables must change the step-mechanism such that there is sufficient time between (discrete) trials; in that way the essential variables change slower than the rate of the main variables; if the essential variables change too fast there is not enough time to communicate the appropriateness of the values around the system and the environment as they are implementing their trial; changing too fast means acting before communication has arrived: ‘And if it takes ten years to observe adequately the effect of a profound re-organisation of a Civil Service, then such re-organisations ought not to occur more frequently than at eleven-year intervals. The amount of communication from essential variables to step-functions can thus become harmful if excessive’ (p 219), (2) When presented with a recurrent situation A and then with Band again with A, a system can act on A appropriately. It was shown in S. 10/8 that while adapting to B the step-mechanisms concerned with the adaptation to A must not be affected with what happens at the essential variables; allowing such communication would be harmful, and (3) It was shown in S. 16/11 that a system’s adaptation depends on its approximation of the iterated form; every addition of channels of communication takes it further away from that state and increases the time to adaptation: ‘Thus in adaptive systems, there are occasions when an increase in thee amount of communication can be harmful’ (p 219).

17/4 Another objection to the lack of connection between part and part is that coordination between part and part is required; this communication is not necessary: First, if the parts in the environment are not connected then no coordination (no communication) between parts of the organism is necessary because the changes in essential variables come (and can be responded to) independently. Second, if the parts in the environment are connected then the actions between the parts of the organism must be coordinated, because the state of all the essential variables must be kept within limits, each in relation to the others’ actions. To achieve this coordination however, communication does not necessarily take place between the organism’s parts, but can take place via the environment.

17/5 Two reasons for communication to exist between part of the organism are: 1) disturbances can come from the environment as well as from other parts; if they come from other parts it is useful if the communication is direct such that it arrives early,

17/6 and 2) the fewer the joins, the smaller the range of behaviors available to the organism (and conversely the larger, the wider the repertoire). In summary: some connections between the parts of the organism are realistically there.

17/7 With increasing connections between the (reacting) parts of the organism, the time to adapt also increases. The richness of connection between the parts of the brain has advantages and disadvantages and so the brain has to develop to reach some kind of optimum; the optimum is not a goal in itself, but is a condition for proper functioning between given limits: ‘Thus, for the organism to adapt with some efficiency against the terrestrial environment, it is necessary that the degree of connexion between the reacting parts lie between certain limits’ (p 224).

Ancillary regulations

17/8 The phrase ‘between certain levels’ above is not a circular argument, because two types (levels, orders) of adaptation are involved; in S. 3/14 it was assumed that certain essential variables, say E, remain within limits. In Chapter 11 the time for achieving equilibrium, say F, was added as an essential variable; time is different from other kinds of essential variables, but it must keep within limits also. The effect of F exceeding its limits on the behavior of a very essential (but not so essential that the organism dies from it) variable EE is that the system must now start to look for other essential variables than EE to change such that the system survives; the difference with an additional change in EE beyond some F is that the step-changes of EE do not suffice and, follwing the method of ultrastability, the step-mechanism of another E (one that remained unchanged while EE changed) is required; an example: the cat has tried every possible combination of levers to get out of the box and must now revert to mewing. Changes in E bring answers, F ‘helps’ only in the sense of forcing a change of set of essential variables hence step-mechanism. As a consequence the conclusion that certain parameters will have to be brought within certain limits does not imply a circular reference.

17/9 real systems are much more complicated than this thesis poses. The reaction part R can contain a multistable system and moreover, it can contain sub-systems of the same form and with its own sub-essential variables and sub-adaptations.

17/10 A mechanism to represent the human brain must find one that adapts really efficient. In S. 17/7 it was argued that this implies adjustment of the degree of intra-cerebral connectivity in the brain to within certain limits. Other parammeters that must be kept within limits also are: (1) duration of trial: this was hinted at in S. 8/15 but not how it is automatic, (2) the essential variables should via the step-mechanisms ‘hunt at bad’ and ‘stick with good´, but it is unclear how this relation works, (3) in S. 10/8 a gating-mechanism was introduced but it is unclear how the organism should get it, and (4) in S. 13/11 the importance was shown of the parameter: richness of equilibria among the states of the parts, but it is unclear how this parameter can be adjusted within limits. Another is discussed in the next paragraph.

Distribution of feedback

17/11 If in Figure 16/6/1 a disturbance is delivered by the environment of some part, it will affect the essential variables, through the corresponding step-mechanism, on to the reacting part and affect THE SAME environment that caused the disturbance initially. This indeed favors efficiency but it need not be so designed: the second-order feedback loops can be connected to another part. The system could not retain adaptations from the past and achieve an equilibrium in any efficient way in practical terms.

17/12 Following the above at least five ancillary regulations must be in place to achieve addaptation with reasonable efficiency and speed: how are they to be achieved?

17/13 The law of requisite variety states that if a certain quantity of disturbance is prevented by a regulator, then the regulator must be capable of exerting at least that quantity of selection. ‘The provision of the ancillary regulations thus demands that a process of selection, of appropriate intensity, exists. The biologist, of course, can answer the question at once; for the work of the last century and especially of the last thirty years has demonstrated beyond dispute that natural, Darwinian, selection, is responsible for all the selections shown so abundantly in the biological world. Ultimately, therefore, these ancillary regulations are to be attributed to natural selection’ (p 229 – 30).

17/14 The purpose of the next section is to show: ‘.. how the ancillary regulations must be developed in brains other than the living’ (p 230). A second purpose is to show that adaptation is the inevitable outcome of the process of causal relations starting at a general point.

Chapter 18. Amplifying Adaptation.

Selection the state-determined system

18/1 Selection is performed by every isolated state-determined system (also I. to C., S. 13/19): ‘In such a system, as two lines of behaviour can become one, but one line cannot become two, so the number of states that it can be in can only decrease’ (p 231). NB: this must connect with utility of diversity (how?) and also with Wolfram’s hunch that selection smooths existing patterns. Selection means that the system tends to achieve some equilibrium; in simple systems this seems trivial, such as a clock running towards its run-down state. The more complex the system gets, the more interesting this property becomes, ‘.. to show: (1) a high intensity of selection by running to equilibrium and (2) that the selected set of states, though only a small fraction of the whole (set of states), is still large enough in itself to give room for a wide range of dynamic activities’ (p 231). ‘Thus, selection for complex equilibria, within which the observer can trace the phenomenon of adaptation, must not be regarded as an exceptional and remarkable event: it is the rule. The cchief reason why we have failed to see this fact in the past is that our terrestrial world is grossly bi-modal in its forms: either the forms in it are extremely simple, like the run-down clock, so that we dismiss them contemptuously, or they are extremely complex, so that we think of them as being quite different, and say that they have Life’ (p 231-2).

18/2 These above are extremes of the same scale. Survival of Odds over Evens (and 0 over all alike) example.

18/3 The common denominator is that whenever a single-valued operator (the ‘law’ of the system) is performed repeatedly on a set of states, then the system tends to the states that are not affected by the operation or to a lesser degree: ‘In other words, every single-valued operation tends to select forms that are peculiarly able to resist its change-inducing action. In simple systems this fact is almost truistic, in complex systems anything but.’ (p 233). Think of the states of preference as a consequence of evolution on the earth: ’The development of life on earth must thus not be seen as something remarkable. On the contrary, it was inevitable’ (p 233). Consider the enormous amount of selection performed by this process, which in fact is the same as the processes we see around us everyday; the greater space available allows more forms to test and the greater period of time allows a greater level of intricate co-ordination. Under evolutionary processes forms in conjunction with their environments have developed powers to resist to the change-inducing actions of the world around them: ‘They are resistant, .. , in the dynamic and much more interesting way of forming intricate dynamic systems around themselves (their so-called ‘bodies’, with extensions such as nests and tools) so that the whole is homeostatic and self-preserving by active defenses’ (p 233). NB: can firms be seen as part of the defenses of people?

18/4 If an organisms deals with disturbances that are not adaptable, because they change over the long run (too fast for its gene-pattern) but remain the same during the generation, then it is advantageous to have the outline of the adaptive mechanism controlled by the gene-pattern and the details by the details within that generation: ‘This is the learning mechanism. Its peculiarity is that the gene-pattern delegates parts of its control over the organism to the environment. Thus, it does not specify how a kitten shall catch a mouse, but provides a learning mechanism and a tendency to play, so that it is the mouse which teaches the kitten the finer points of how to catch mice’ (p 234). NB: the environment of people changes faster than their gene-pattern can accommodate. Genes allow the environment including the firm to take some control over people?

18/5 The law of requisite variety must be applied to ancillary regulations, how the relevant parameters are brought to their appropriate values as follows: 1) some are injected by the genes and the organism is born with the correct values or 2) other ancillary regulations can be adjusted by the gene-pattern at one remove: the gene-pattern establishes a mechanism, a regulator that would then proceed at its own initiative to bring parameters to their appropriate values. However systems can seldom be arranged into distinct levels.

Amplifying adaptation

18/6 How much regulation does the gene-pattern achieve, considering the law of requisite variety? Under direct regulation some mechanism ensures that an essential variable is maintained within limits; under indirect regulation, a regulating mechanism of a parameter affecting the essential variable ensures that the parameter stays within limits which keeps the essential variable within limits. There is no relation between the amount of regulation to keep the essential variable within limits and the amount of regulation to keep the parameter within limits; as a consequence the amount of regulation to keep the parameter within limits can be small but the amount to keep the essential variable within limits can be large. Under direct regulation the amount is limited by what can be supplied by the law of requisite variety, under indirect regulation more regulation may be shown by the essential variable than is supplied to the parameter. Indirect regulation can amplify the amount of regulation.

18/7 ‘Living organisms came across this possibility aeons ago, for the gene-pattern is a channel of communication from parent to offspring..’ (p 236). NB: the meme-pattern is also a channel of communication from ‘parent’ to ‘offspring’ in a cultural sense. The gene-pattern leads to the growing in organisms of a brain that is partly adapted by details in the gene-pattern as well as by details in the environment: ‘The environment acts as the dictionary’ (p 236-7). Thus the information that comes to an organism via its gene-pattern is supplemented by the information supplied by the environment: ‘.. so the total adaptation possible, after learning, can exceed the quantity transmitted directly through the gene-pattern’ (p 237).

Summary

All state-determined dynamic systems are selective; from whatever initial state they go towards states of equilibrium; considering the change-inducing laws of the system, these states are exceptionally resistant: ‘Specially resistant are those forms whose occurrence leads, by whatever method, to the occurrence of further replicates of the same form – the so-called ‘reproducing’ forms’ (p 238). Local equilibria take the shape of sub-systems that are exceptionally resistant to local disturbances; the parts of such a stable local equilibrium are co-ordinated in their defence against disturbances. If the class of disturbance changes from generation to generation then the organism can be more resistant if it is born with a mechanism that the environment will make it act in a regulatory way against the particular environment – the learning organisms.

Autopoiesis

Humberto R. Maturana, Francisco J. Varela . The Realization of the Living (Originally: De maquinas y seres vivos 1972) . ISBN 90-277-1015-5 . 1980 . D. Reidel Publishing Company . Dordrecht: Holland / Boston: USA / London: England

Foreword

A theoretical biology which is topological where the topology is self-referential from the point-of-view of the system itself and has no outside, ‘.. Leibnizian for our day’ (p v). Cognition is defined as a biological phenomenon and as the very nature of biological systems. Hence: ‘Living systems are cognitive systems, and living as a process is a process of cognition’ (p vi).

Essay 1: Biology of Cognition

1) What is the organization of the living? AND 2) What takes place In the phenomenon of perception? Ad 1) No valid definition is available that accounts for all systems: we can recognize them when we encounter them but we cannot say what they are. What is the invariant feature around which selection operates? NB that this is similar to my question concerning the invariant in business change! Look at systems not as open systems, exchanging energy and information with their environment, but closed. In addition a language is needed to describe autonomy as a feature of the system specified by the description. As a consequence notions of purpose, intent, use and function must be rejected. The definition of these systems as unities through their self-reference is their autonomy. Living systems are defined as unities through the circularity of the production of their components. Ad 2) With this theory the activity of the nervous system can be treated as the activity of the system itself and not of its environment. The external world only has a triggering role in the release of the internally determined activity. Moreover the working of the nervous system can only be understood by closing it off: perception is not the grasping of but the specification of an external reality. This can be connected with the Wagensberg model, but some modifcations are required to clean it from thermodynamical arguments. The question changes from: ‘How does the organism obtain information about its environment’ to ‘How does it happen that the organism has the structure that permits it to operate adequately in the medium in which it exists?’ (p xvi).

It was in these circumstances that one day, while talking to a friend (José Bulnes) about an essay of this on Don Quixote de la Mancha, in which he analyzed Don Quixote’s dilemma of whether to follow the path of arms (praxis, action) or the path of letters (poiesis, creation, production), and his eventual choice of the path of praxis deferring any attempts at poiesis, I understood for the first time the power of the word ‘poiesis’ and invented the word that we needed: autopoiesis. This was a word without a history, a word that could directly mean what takes place in the dynamics of the autonomy proper to living systems’ (p xvii)

In a sense it has been my way to a transcendental experience: to the discovery that matter, metaphorically speaking, is the creation of the spirit (the mode of existence of the observer in a domain of discourse) and that the spirit is the creation of the matter that it creates’(p xviii). I would refer to this as the meeting of content and process: beliefs lead to decisions which in turn lead to behavior which lead to a new context which, given beliefs, lead to new action and perhaps to a change of the belief also.

Unity, Organization and Structure

Unity. An observer performs the cognitive operation of distinguishing an entity from its background. They are distinguished for the separability of the respective properties endowed them through this cognitive operation. If this operation is performed recursively by the observer then the components of the entity can be distinguished and the entity is defined by the properties of its components. The observer can also observe the entity as a single unity and distinguish it in the domain of its properties as a unity and not in the domain of the properties of its components. If an autopoietic system is treated as a composite unity, it exists in the space defined by its components, but if it is treated as a simple unity then it is defined in the domain of the distinctive properties of the unity.

Organization and Structure. The relations between the components of a composite unity that define it as a particular kind of a unity constitute its organization. Only those properties are considered and only to the extent that they participate in the constitution of the unity they integrate. The actual components and their actual relations, concretely realizing a system as a member of a class of systems in which it categorizes because of its organization, constitutes its structure. Any given organization may be realized by many different structures and different subsets of components and their relations in a given structure may be abstracted by an observer as organizations defining different classes of composite unities. The organization specifies the class identity of a system and must remain invariant for the class identity to remain invariant; if its organization changes then its identity changes and the unity becomes a unity of a different kind. Conversely because an organization can be realized in systems with different structures, the identity of a system can stay invariant while its structure changes within limits determined by its organization.

Structural coupling. Unity and medium as independent systems operate in each interaction by triggering in each other a structural change, and select in each other a structural change. If the organization in a composite system remains invariant while it undergoes structural changes induced by its medium, then its adaptation is conserved. The structural change in the unity follows the structural change in the medium through a process of structured coupling. Else the outcome of the unity is disintegration. If the unity is structurally plastic, then its conservation of adaptation results in a history of structural couplings to the medium that selects its path of structural change. The configuration of constitutive relations that remain invariant in the adapted composite unity determines the possible perturbations that the unity can admit; it is a reference for the selection of the path of structural changes that take place in it in its history of interactions.

Epistemology. If a composite unity is specified as a simple system then the phenomenological domain is specified by the properties of the simple unity. Because that differs from the domain of the properties of the components phenomenal reduction is not possible. The relations between the components of a composite system interact through a system of contiguity. Necessarily relations such as control and regulation are not of contiguity, but referential relations specified by the observer using their meta-domain by using their view of the whole. The observer creates a meta-domain of descriptions that allows them to speak as if a unity existed as a separate entity that they can characterize by specifying the operations that must be performed to distinguish it. Having characterized it as a distinguishable entity, in that meta-domain can he only cognize the entity in terms of that meta-domain.

Society and Ethics

(1) ‘It is apparent that natural social systems as systems constituted by living systems require these for their actual realization. What is not apparent, however, is the extent to which the coupling of living systems in the integration of a social system entails the realization of their autopoiesis’ (p xxiv). Why is the use of the term ‘autopoiesis’ in the sentence above with regards to the organization of the social system avoided? ‘If, however, the autopoiesis of the components of a natural social system were not involved in its constitution because the relations that define a system as social do not entail them, then the autopoiesis of the components (and hence their autonomy and individuality) would be intrinsically dispensable’ (p xxiv). This means that if autopoiesis of the components of a social system is not involved in the constitution of a social system, then the autopoiesis of the components is not required. Hence the autonomy and individuality of the components would be ‘intrinsically dispensable’. This seems to be a hint at the status of people making up a social group. It does not take into account the existence of memes as components of a memeplex that forms the social fabric of a group.

(2) ‘Accordingly, I propose that a collection of autopoietic systems that, through the realization of their autopoiesis, interact with each other constituting and integrating a system that operates as the (or as a) medium in which they realize their autopoiesis, is indistinguishable from a natural social system. Or, in other words, I propose that the relations stated above characterize the organization of a social system as a system, and that all the phenomena proper to social systems arise from this organization’(p xxv) This must serve as the connection of the autopoiesis theory with the theory of memetics. The autopoietic systems are the belief systems of the components of the social system, namely individual people. Their autopoiesis is realized through the existence of the autopoiesis of the autopoietic social system. The component autopoietic systems and the social autopoietic systems both are realized through the other’s autopoiesis. Implications of this proposition are: (i) ‘The realization of the of the autopoiesis of the components of a social system is constitutive to the realization of the social system itself’ (p xxv) (ii) ‘A collection of living systems integrating a composite unity through relations that do not involve their autopoiesis is not a social system, and the phenomena proper to its operation as such a composite unity are not social phenomena’ (p xxv). (iii) ‘Therefore, the domain of social phenomena, defined as the domain of the interactions and the relations that an observer sees taking place between the compnents of a society, results from the autopoietic operation of the components of the components of the society while they realize it in the interplay of their properties’ (p xxv) (iv) ‘In a society, at any instance of observation, the structures of the components determine the properties of the components, the properties of the components realize the structure of the society, and the structure of the society operates as a selector of the structure of its components by being a medium in which they realize their ontogeny’ (p xxv) NB: this is the notion of the connection between process and content in a social system (v) ‘An autopoietic system participates in the constitution of a social system only to the extent that it participates in it, that is, only as it realizes the relations proper to a component of the social system’(p xxv)

(3) ‘A society defines the domain in which it is realized as a unity’(p xxv) Such a domain constitutes at least an operationally independent medium that operates as: a) a selector of the path of structural change that the society follows in its individual history, and b) ‘if stable, a historical stabilizer of the structures that realize the selected invariant relations that define the society as a particular social system’ (p xxvi).

(4) ‘To the extent that human being are autopoietic systems, all their activities as social organisms must satisfy their autopoiesis’ (p xxvii) ‘In man as a social being, therefore, all actions, however individual as expressions of preferences or rejections, constitutively affect the lives of other human beings and, hence, have ethical significance’ (p xxvi)

(5) ‘What determines the constitution of a social system are the recurrent interactions of the same autopoietic systems. In other words, any biological stabilization of the structures of the interacting organisms that results in the recurrence of their interactions, may generate a social system’ (p xxvi). Gene >> Meme. Also Kevin and Gavin.

(6) ‘A social system is essentially a conservative system. This is so because it is generated through the interactions of structure-determined autopoietic systems and operates as a medium that selects the path of ontogenic structural change of its components, which, thus, become structurally coupled to it. In our case, we as social beings generate, through our structure-determined properties, our societies as the cultural media that select our individual paths of ontogenic change in a manner that leads each one of us to the structure that makes us generate the particular societies to which we belong. A society, therefore, operates as a homeostatic system that stabilizes the relations that define it as a social system of a particular kind’ (p xxvi- xxvii).

(7) The domain of states of a system as a composite unity is determined by the properties that realize its organization. It follows that a social change in a human society can only take place if the individual properties and hence conduct of its members change.

(8) ‘All that matters for the realization of a society is that the component autopoietic systems should satisfy certain relations regardless of the actual structures (internal processes) through which they realize them’ (p xxvii) Hypocrisy.

(9) ‘Interactions within a society are necessarily confirmatory of the relations that define it as a particular social system; if not, the organisms that interact do not interact as components of the society which they otherwise integrate. It is only through interactions operationally not defined within the society that a component organism can undergo interactions that lead to the selection, in its ontogeny, of a path of structural change not confirmatory of the society that it integrates. ..social creativity, as the generation of novel social relations, always entails interactions operationally outside the society.. Social creativity is necessarily anti-social in the social domain in which it takes place’ (p xxvii-xxviii)

(10) ‘In general any organism, and in particular any human being, can be simultaneously a member of many social systems, such as family, a club, an army, a political party, a religion or a nation, and can operate in one or another without necessarily being in internal contradiction. .. An observer always is potentially antisocial’ (p xxviii)

(11) ‘To grow as a member of society consists in becoming structurally coupled to it; to be structurally coupled to a society consists in having the structures that lead to the behavioral confirmation of the society’ (p xxviii)

(12) ‘We as human beings exist in a network of social systems and move from to another in ou daily activities. Yet, not all human beings caught in the mesh of relations generated in this network of social systems participate in it as social beings’ (p xxviii-xxix). This means that if the interaction of someone in this social system does not involve their autopoiesis, is being used by the system but not a member or it is social abuse.

(13) (14) (15)

Biology of Cognition

1. Introduction

Man knows and his capacity to know depends on his biological integrity; furthermore he knows that he knows’ (p 5). This statement also explains the requirement of the existence of human beings as biological organisms for the existence of memes. ‘As a psychological, and hence biological function cognition guides people’s handling of the universe and knowledge gives certainty to their acts; objective knowledge seems possible and through objective knowledge the universe appears systematic and predictable. Yet knowledge as an experience is something personal and private that cannot be transferred, and that which one believes to be transferable, objective knowledge, must always be created by the listener: the listener understands and objective knowledge appears to be transferred, only if he is prepared to understand’ (p 5) Thus cognition is a biological function; it is known through knowledge.

(a) If an organism is a unity, in what sense are its component properties its parts? Has some property arisen from the properties of its organization or from its mode of life?

(b) ‘Organisms are adapted to their environments, and it has appeared adequate to say of them that their organization represents the ‘environment’ in which they live, and that through evolution they have accumulated information about it, coded in their nervous system. Similarly it has been said that the sense organs gather information about the ‘environment’, and through learning this information is coded in the nervous system [Cf. Young, 1967]. Yet this general view begs the questions, ‘What does it mean to ‘gather information?’ and ‘What is coded in the genetic and nervous system?’ (p 6)

III Cognitive Function in General

The Observer

(1) ‘Anything said is said by an observer’ (p 8)

(2) The observer can observe an object and its environment simultaneously. This allows them to interact with both independently and have interactions that are outside of the domain of the observed entity.

(3) An attribute of the observer is that they can interact both with the observed entity and with its relations. Both are units of interaction (entities)

(4) To the observer an entity is an entity if they can describe it. They can describe it if at least one other entity exists so as to distinguish the observed entity from in its description; the ultimate reference is the observer themselves.

(5) The set of all interactions of an entity is its domain of interactions and the set of all possible interactions with the observer (relations) is its domain of relations; the latter lies within the cognitive domain of the observer. ‘An entity is an entity if it has a domain of interactions, and if this domain includes interactions with the observer who can specify for it a domain of relations’ (p 8)

(6) The observer can define himself as an entity by specifying his own domain of interactions.

(7) ‘The observer is a living system and an understanding of cognition as a biological phenomenon must account for (the existence of DPB) the observer and his role in it (the phenomenon DPB)’ (p 9)

The Living System

(1) ‘Living systems are units of interactions; they exist in an ambience. From a purely biological point of view they cannot be understood independently of that part of the ambience with which they interact: the niche; nor can the niche be defined independently of the living system that specifies it’ (p 9)

(2) ‘Living systems as they exist on earth today are characterized by .. a closed circular process that allows for evolutionary change in the way the circuitry is maintained, but not for the loss of the circuitry itself. .. This circular organization constitutes a homeostatic system whose function is t produce and maintain this very same circular organization by determining that the components that specify it be those whose synthesis or maintenance it secures’ (p 9)

(3) ‘It is the circularity of its organization that makes a living system a unit of interactions, and it is this circularity that it must maintain in order to remain a living system and to retain its identity through different interactions’ (p 9)

(4) ‘Due to the circular nature of its organization a living system has a self-referring domain of interactions (it is a self-referring system), and its condition of being a unit of interactions is maintained because its organization has functional significance only in relation to the maintenance of its circularity and defines its domain of interactions accordingly’ (p 10)

(5) ‘Living systems as units of interactions specified by their condition of being living systems cannot enter into interactions that are not specified by their organization. The circularity of their organization continuously brings them back to the same internal state (same with respect to the cyclic process). Each internal state requires that certain conditions (interactions with the environment) be satisfied in order to proceed to the next state’ (p 10). The circular organization implies the prediction that an interaction will take place again. If it does not then the system will disintegrate, if it does it will maintain its integrity (identity vis a vis the observer) and move on to the next prediction. In a continuously changing environment the system can only remain intact if the environment does not change in that which is predicted. The predictions implied in the organizations are not predictions of particular events but of classes of interactions; interactions the features of which allow the organization of the system and hence its identity to remain intact. This makes living system inferential systems and their domain of interactions a cognitive domain.

(6) A niche is defined by the classes of interactions into which a system can enter. The environment is defined as the classes of interactions into which an observer can enter; they treat it as a reference for their interactions with the system. The observer considers the niche of a system the set of interactions that they observe to lie in its part of the domain of interactions of the environment. For the observer a niche is a part of the environment, for the system it is the entire set of possible interactions. As such a niche cannot be ‘part’ of the environment which lies exclusively in the cognitive domain of the observer. ‘Niche and environment, then, intersect only to the extent that the observer (including instruments) and the system have comparable organizations, but even then there are always parts of the environment that lie beyond any possibility of the intersections with the domain of interactions of the organism, and there are parts of the domain of the niche that lie beyond any possibility of intersection with the domain of interactions of the observer. Thus for every living system its organization implies a prediction of a niche, and the niche thus predicted as a domain of classes of interactions constitutes its entire cognitive reality’ (pp. 10-11) This is relevant for the observation of the firms by people as observers and vice versa.

(7) ‘Every unit of interactions can participate in interactions relevant to other, more encompassing units of interactions. If in doing this a living system does not lose its identity, its niche may evolve to be contained by the larger unit of interactions and thus be subservient to it. If this larger unit of interactions is (or becomes) in turn also a self-referring system in which its components (themselves self-referring systems) are subservient to its maintenance as a unit of interactions, then it must itself be (or become) subservient to the maintenance of the circular organization of its components’ (p 11). This is possibly relevant concerning acquisition of firms by other firms (DPB): cells >> bees >> beehive; cells >> people >> firms >> larger firms &c.

Evolution

(1) Evolutionary change is an aspect of the circular organization that preserves the system’s basic circularity. ‘Reproduction and evolution are not essential for the living organization, but they have been essential for the historical transformation of the cognitive domains of the living systems on earth’ (p 11)

(2) For a change in a unity without losing its identity with respect ot the observer, it must suffer an internal change. If an internal change occurs without the identity of the unity changing then the domain of interactions must change.

(3) After reproduction the new unity has the same domain of interactions as the parent if it has the same organization.

(4) Predictions about the niche are inferences about classes of interactions. Particular interactions may be of the same class and not distinguishable for the system but they may be to the observer.

(5) Aspects of the organization that are subservient to the maintenance of the basic circularity but do not determine it change from generation to generation. The system maintains its organization and its identity through interactions. The basic circularity remains unchanged, the way it is maintained changes. ‘The evolution of the living systems is the evolution of the niches of the units of interactions defined by their self-referring circular organization, hence, the evolution of the cognitive domains’ (p 12)

The Cognitive Process

(1) ‘A cognitive system is a system whose organization defines a domain of interactions in which it can act with relevance to the maintenance of itself, and the process of cognition is the actual (inductive) acting of behaving in this domain. Living systems are cognitive systems, and living as a process is a process of cognition’ (p13)

(2) ‘If a living system enters into a cognitive interaction, its internal state is changed in a manner relevant to its maintenance, and it enters into a new interaction without loss of its identity’ (p 13)

(3) The function of the nervous system is subservient to the necessary circularity of the living organization.

(4) The nervous system has expanded the domain of interactions and hence has transformed the unit of interactions and had subjected interacting to the process of evolution.

(5) This expansion of the cognitive domain (into the domain of ‘pure relations’) allows for non-physical interactions between systems such that the systems orient each other towards interactions within their respective domains. ‘Herein lies the basis for communication: the orienting behavior becomes a representation of the interactions toward which it orients, and a unit of interaction in its own terms. .. there are organisms that generate representations of their own interactions by specifying entities with which they interact as if these belonged to an independent domain, while as representations they only map their own interactions. .. a) We become observers through recursively generating representations of our interactions, and by interacting with several representations simultaneously we generate relations with the representations of which we can then interact.. b) We become self-conscious through self-observation; by making descriptions of ourselves (representations), and by interacting with our descriptions we can describe ourselves describing ourselves, in an endless recursive process’ (p 14)

Description

(1) A living system is an inductive system: what happened once will occur again. Its organization is conservative and repeats only that which works. The present state is always specified by the previous state that restricts the field of possible modulations by independent concomitances.

(2) For the observer any one of the system’s behaviors appears as an actualization of the niche, that is, as a first order description of the environment (denoted as Description); this is a description in terms of the behavior (interactions) of the observed system, not representations of environmental states. The relation between behavior and niches exists in the cognitive domain of the observer only.

(3) A living system can modify the behavior of another system by: a) interacting with it in a way that directs both toward each other such that the following behavior of the one depends strictly on the previous behavior of the other. In this case the two systems can be said to interact. b) By orienting the behavior of the other system to some part of its domain of interactions different from the present interaction but comparable to the orientation of the orienting system. This takes place if the domains of interactions of both systems are coincident; no interlocking chain of behavior takes place because the systems’ behavior is based on parallel but independent behavior. In this case the systems can be said to communicate; this is the basis for linguistic behavior. The first generates a Description of its niche that orients the second within its cognitive domain to an interaction, which ensues a conduct parallel but unrelated to the first. The orienting behavior to the observer is a second order behavior, denoted in italics as description (linguistic utterance DPB), that denotes whatever denotation they assign to it: ‘.. that which an orienting behavior connotes is a function of the cognitive domain of the orientee, not the orienter’ (p 28).

(4) In an orienting interaction the orienter’s behavior as a description generates activity in the orientee, which then, in turn makes a Description of its niche connoted by the orienting behavior of the first.

(5) ‘If an organism can generate a communicative description and then interact with its own state of activity that represents this description, generating another such description that orients towards this representation…, the process can in principle be carried on in a potentially infinite recursive manner, and the organism becomes an observer: it generates discourse as a domain of interactions with representations of communicative descriptions (orienting behaviors). Furthermore, if such an observer through orienting behavior can orient himself towards himself, and then generate communicative descriptions that orient him towards his description of his self-orientation, he can, by doing so recursively, describe himself describing himself .. endlessly. This discourse through communicative description originates the apparent paradox of self-description: self-consciousness, a new domain of interactions’ (p 28-9).

Thinking

(1) Thinking is the neuro-physiological process of interacting with some of its own internal states as if these were independent entities. From thinking behavior emerges in a deterministic manner. The difference with a reflex action is that the concerning the latter a signal can be traced back to the sensory system. In thinking the signal begins with a distinguishable state of activity of the nervous system itself (2) This process above is independent from language.

Natural Language

(1) ‘Linguistic behavior is orienting behavior; it orients the orientee within his cognitive domain to interactions that are independent of the nature of the orienting interactions themselves. .. Only if the domains of interactions of the two organisms are to some extent comparable, are such consensual orienting interactions possible and are the two organisms able to develop some conventional, but specific, system of communicative descriptions to orient each other to cooperative classes of interactions that are relevant for both’ (p 30). These are the interactions as per Knorr-Cetina.

(2) –

(3) ‘Behavior (function) depends on the anatomical organization (structure) of the living system, hence anatomy and conduct cannot legitimately be separated and the evolution of behavior is the evolution of anatomy and vice versa; anatomy provides the basis for behavior and hence for its variability; behavior provides the ground for the action of natural selection and hence for the historical anatomical transformations of the organism’ (p 31).

(4) ‘However, when it is recognized that language is connotative and not denotative, and that its function is to orient the orientee within his cognitive domain, without regard for the cognitive domain of the orienter, it becomes apparent that there is no transmission of information through language. It behooves the orientee, as a result of an independent internal operation upon his own state, to choose where to orient his cognitive domain; the choice is caused by the ‘message’, but the orientation thus produced is independent of what the ‘message’ represents for the orienter. In a strict sense then, there is no transfer of information from the speaker to his interlocutor; the listener creates information by reducing his uncertainty through his interactions in his cognitive domain. Consensus arises only through cooperative interactions in which the resulting behavior of each organism becomes subservient to the maintenance of both. .. The cooperative conduct that may develop between the interacting organisms from these communicative interactions is a secondary process independent of their operative effectiveness. If it appears to be acceptable to talk about transmission of information in ordinary parlance, this is so because the speaker tacitly assumes the listener to be identical with him and hence as having the same cognitive domain which he has (which never is the case), marveling when a ‘misunderstanding’ arises’ (p 32-3).

(5) –

(6) ‘If one considers linguistic interactions as orienting interactions it is apparent that it is not possible to separate, functionally, semantics and syntax, however separable they may seem in their description by the observer. This is true for two reasons: a) A sequence of communicative desriptions (words in our case) must be expected to cause in the orientee a sequence of successive orientations in his cognitive domain, each arising from the state left by the previous one… b) An entire series of communicative descriptions can itself be a communicative description; the whole sequence once completed may orient the listener from the perspective of the state to which the sequence itself has led him’ (p 33)

(7) ‘Linguistic behavior is an historical process of continuous orientation’ (p 34)

(8) –

(9) ‘Orienting behavior in an organism with a nervous system capable of interacting recursively with its own states expands its cognitive domain by enabling it to interact recursively with descriptions of its interactions. As a result: a) Natural language has emerged as a new domain of interactions in which the organism is modified by its descriptions of its interactions.. b) Natural language is necessarily generative because it results from the recursive application of the same operation (as a neurophysiological process) on the results of this application c) New sequences of orienting interactions (new sentences) within the consensual domain are necessarily understandable by the interlocutor (orient him), because each one of their components has definite orienting functions as a member of the consensual domain that it contributes to define’ (pp. 34- 5)

Memory and Learning

(1) ‘Learning as a process consist in the transformation through experience of the behavior of an organism in a manner that is directly or indirectly subservient to the maintenance of its basic circularity’ (p 35)

(2) ‘Learning occurs in such a manner that, for the observer, the learned behavior of the organism appears justified from the past, through the incorporation of a representation of the environment that acts, modifying its present behavior by recall; notwithstanding this, the system itself functions in the present, and for it learning occurs as an atemporal process of transformation. An organism cannot determine in advance when to change and when not to change during its flow of experience, nor can it determine in advance which is the optimal functional state that it must each; both the advantage of any particular behavior and the mode of behavior itself can only be determined a posteriori, as a result of the actual behaving of the organism subservient to the maintenance of its basic circularity’ (pp. 35-6)

(3 tm 7) –

(8) ‘Past, present and future and time in general belong to the cognitive domain of the observer’ (p 38)

The Observer

(1) The cognitive domain is the entire domain of interactions of the organism. It can be enlarged if new modes of interactions are generated or instruments are applied.

(2) –

(3) The observer generates a spoken description of his cognitive domain (which includes his interactions with and through instruments).

(4) ‘The observer can describe a system that gives rise to a system that can describe, hence, to an oberver. A spoken explanation is a paraphrase, a description of the synthesis of that which is to be explained; the observer explains the observer. A spoken explanation, however, lies in the domain of discourse. Only a full reproduction is a full explanation’ (p 39)

(5) ‘The domain of the discourse is a closed domain, and it is not possible to step outside of it through discourse. Because the domain of discourse is a closed domain it is possible to make the following ontological statement: the logic of the description is the logic of the describing (living) system (and his cognitive domain)’ (p 39) This bears a relation with the Wolfram statement that natural processes are the same as the processes that produced the human powers of perception and analysis.

(6) ‘This logic demands a substratum for the occurrence of the discourse. We cannot talk about this substratum in absolute terms, however, because we would have to describe it, and a description is a set of interactions into which the describer and the listener can enter, and their discourse about these interactions will be another set of descriptive interactions that will remain in the same domain. Thus, although this substratum is required for epistemological reasons, nothing can be said about it other than what is meant in the ontological statement above’(p 39)

(7) ‘We as observers live in a domain of discourse interacting with descriptions of our descriptions in a recursive manner, and thus continuously generate new elements of interaction. As living systems, however, we are closed systems modulated by interactions through which we define independent entities whose only reality lies in the interactions that specify them (their Description)’ (p 40)

(8) ‘For epistemological reasons we can say: there are properties which are manifold and remain constant through interactions. The invariance of properties through interactions provides a functional origin to entities or units of interactions; since entities are generated through the interactions that define them (properties), entities with different classes of properties generate independent domains of interactions: no reductionism is possible’ (p 40)

Post Scriptum

(i) ‘.. That is, man changes and lives in a changing frame of reference in a world continuously created and transformed by him. Successful interactions directly and indirectly subservient to the maintenance of his living organization constitute his only final source of reference for valid behavior within the domain of descriptions, and, hence, for truth; but, since living systems are self-referential systems, any final frame of reference is, necessarily, relative. Accordingly, no absolute system of values is possible and all truth and falsehood in the cultural domain are necessarily relative’ (p 57)

(ii) ‘Language does not transmit information and its functional role is the creation of a cooperative domain of interactions between speakers through the development of a common frame of reference, although each speaker acts exclusively within his cognitive domain where all ultimate truth is contingent to personal experience. Since a frame of reference is defined by the classes of choices which it specifies, linguistic behavior cannot be but rational, that is, determined by relations of necessity within the frame of reference within which it develops. Consequently, no one can ever be rationally convinced of a truth which he did not have already implicitly in his ultimate body of beliefs’ (p 57)

(iii) ‘Man is a rational animal that constructs his rational systems as all rational systems are constructed, that is, based on arbitrarily accepted truths (premises); being himself a relativistic self-referring deterministic system this cannot be otherwise. But if only a relative, arbitrarily chosen system of reference is possible, the unavoidable task of man as a self-conscious animal that can be an observer of its own cognitive processes is to explicitly choose a frame of reference for his system of values. .. ‘ (p 58)

Essay 2:

Autopoiesis – The Organization of the Living

Preface (Stafford Beer)

General: knowledge is categorized and so is our world view. Not wholes seen through different filters but parts derived through analysis and categorized.

The stuff of systems is relations between components. Relation is the essence of synthesis. During categorization the relations between the components are not included. Relations are discarded and alienated and distantiated from. ‘It is an Iron Maiden in whose secure embrace scholarship is trapped‘ (p64).

The world develops exponentially because it is a complex system. Knowledge is developed at a categorically at a linear pace and so in effect the understanding of the world is receding. This book is important in a general sense in that its meaning in a meta-systemic level and not at a interdisciplinary level. And so what appears is not classifiable under the old categories.

Particular: autopoietic systems are homeostats: the variable that keeps a critical system stable is the system’s own organization. Anything can change about the system but as such it survives.

Beer states that human societies are biological systems: ‘..any cohesive social institution is an autopoietic system – because it survives, because its method of survival answers the autopoietic criteria, and because it may well change its entire appearance and its apparent purpose in the process. As examples I list: firms and industries, schools and universities, clinics and hospitals, professional bodies, departments of state, and whole countries’ (p70).

If this view is valid, it has extremely important consequences. In the first place it means that every social institution (in several of which any one individual is embedded at the intersect) is embedded in a larger social institution, and so on recursively – and that all of them are autopoietic. This immediately explains why the process of change at any level of recursion (from the individual to the state) is not only difficult to accomplish but actually impossible – in the full sense of the intention: ‘I am going completely to change myself’. The reason is that the ‘I’, that self-contained autopoietic ‘it’, is a component of another autopoietic system’. These last statements also bear a relation to the experience with change management. It is related to the idea of a funnel resulting from the Western belief in the idea of progress (aka capitalism, aka free-market mechanism).

BELANGRIJK regarding social systems: the authors claim: ‘Our purpose is to understand the organization of living systems in relation to their unitary character’. This formulation of the problem begs the question as to what is allowed to be a called a living system, as theey themselves admit. ‘Unless one knows which is the living organization, one cannot know which organization is living’. They quickly reach the concusion however (Subsection (b) of Section 2 of Chapter 1) that ‘autopiesis is necessary and sufficient to characterize the organization of living systems’. THEN they display some unease, quoting the popular belief: ‘… and no synthetic system is accepted as living.’(p71). This is an important connection with memetics: now it is possible to claim that social systems (that is to say the memetic systems that bring them about) are natural systems and so they are not synthetic by design. I have argued that because it evolves it must be alive so as to be able to define the subject of evolution via the concept of living systems.

AUTOPOIESIS – The Organization of the Living

Systeem causaliteit

Introduction

Common experience is that living systems are autonomous and they can reproduce. Conversely if something shows signs of autonomy then it is naively often deemed to be alive. Autonomy is exhibited by living systems through their self-asserting capacity to maintain their identity through the active compensation of deformations. The endeavor of the authors is to disclose the nature of the living organization. Their purpose is to understand the organization of living systems in relation to their unitary character. Their approach is mechanistic: no forces or principles will be adduced which are not found in the physical universe. Their interest is in processes and relations between processes realized through components, not in the properties of components (p75). It is assumed that an organization exists that is common to all living systems, regardless the nature of their components (p76). It is assumed that living systems are machines: a non-animistic view, relations are the pivot, not the components, dynamism is a feature of many machines also. The research question is: ‘What is the organization of living systems,, what kind of machines are they, and how is their phenomenology, including reproduction and evolution, determined by their unitary organization?’ (p76).

Chapter I – On Machines, Living and Otherwise

1. Machines

The properties of the components are irrelevant apart from those that participate in the interactions and transformations that constitute the system. The relevant properties determine those relations that determine the working of the machine which they integrate and constitute as a unity.

The organization of the machine is constituted by the relations that define it as a unity and determine the dynamics of the interactions and the transformations it may undergo as such a unity. The structure of the machine is constituted by the actual relations holding between the components integrating the machine in a given space. In this way a given machine can be realized by many different structures (p77).

‘Purpose’ is a means to explain more efficiently the workings of a machine: by using this concept, the imagination of the listener is invoked to reduce the task of explaining of the organization of a particular machine. It is not one of the constitutive properties of such a machine.

2. Living machines

a) Autopoietic machines

Machines can maintain some of their variables constant or within a limited range. This is expressed in the organization of the machine such that the process occurs within the boundaries of the machine which the very organization specifies. These machines are homeostatic and all feedback is internal to them. If there is a machine M with a feedback loop external to it such that a change in the output changes the input, then a M’ exists that includes the feedback loop in the organization that defines it. This is how autopoiesis is defined by the authors: ‘An autopoietic machine is a machine organized (defined as a unity) as a network of processes of production (transformation and destruction) of components that produces the components which: (i) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produced them; and (ii) constitute it (the machine) as a concrete unity in the space in which they (the components) exist by specifying the topological domain of its realization as such a network’ (p79). In this way the autopoietic machine generates and specifies its own organization through its operation as a system of production of its own components in their endless turnover under conditions of perturbations and compensation thereof.

The relations of production of components are given as processes; if these processes stop then the production stops. In an autopoietic system these relations must be regenerated by the components which they produce such that the system remain autopoietic.

Autopoietic organization means that processes interlace a network of processes of production of components which constitute the network as a unity as they realize it. Every time this organization is realized as a concrete system in a given space, the domain of deformations, which this system can withstand without loss of identity as it maintains its organization constant, is the domain of changes in which it exists as a unity (p80). Autopoietic machine:

(i) are autonomous because they subordinate all change to the maintenance of their own organization

(ii) have an individuality because they keep their organization as an invariant through its continuous production. This represents their identity which is independent of their interactions with an observer

(iii) are unities because of their autopoietic organizations and their operations specify their own boundaries in the processes of self-production

(iv) have no inputs or outputs because even though they can be perturbed by independent events and they can repeatedly undergo structural changes to compensate these. These changes are always subordinated to the maintenance of the autopoietic organization of the machine

The actual implementation of the organization in physical space depends on the properties of the physical materials that embody it. A machine will disintegrate if it is perturbed such that the organization would have to compensate outside of its domain of compensations. The actual way a machine is realized determines the particular perturbations it can suffer without disintegrating.

b. Living systems

In other words we claim that the notion of autopoiesis is necessary and sufficient to characterize the organization of living systems’ (p82).

Chapter II – Dispensability of Teleonomy

Teleology means to describe things by their apparent goal or purpose. Teleonomy means the quality of apparent purposefulness or goal-directedness in living organisms. Both are unnecessary for the understanding of the living organization.

1. Purposelessness

Ontogeny is generally considered as an integrated process toward an adult state following some internal project or program. At different stages certain structures are attained that allow it to perform certain functions. Phylogeny is viewed as the history of adaptive transformations via reproductive processes aimed at satisfying the project of the species with complete subordination of the individual to this end. Purpose or aim and function are not functions of any machine (allo or auto) but they belong to the domain of our actions, namely the domain of descriptions. When applied to some system independent from us, they reflect our considering the machine or system in some encompassing context. Define a set of circumstances that lead the machine to change following a certan path of variations in its output. The connection between these outputs and the corresponding inputs in the selected context is called the aim or purpose of the machine. This aim is necessarily in the domain of the observer. Function can be treated in the same way. Neither aim nor function of the machine constitute its organization and so they are not part of its operation. ‘Living systems, as physical autopoietic machines, are purposeless systems’ (p86).

2. Individuality

In fact, a living system is specified as an individual, as a unitary element of interactions, by its autopoietic organization which determines that any change in it should take place subordinated to its maintenance, and thus sets the boundary conditions that specify what pertains to it and what does not pertain to it in the concreteness of the realization’(p87). In its history as an autopoietic organization, change in a living system can only take place so the extent that it does not interfere with the system’s functioning as a unity; the autopoietic organization remains invariant. Ontogeny in this sense is an expression of the individuality of living systems and the way it is realized; it is a process of the becoming of a system that is fully autopoietic, at every point, the unity in its fullness and not a transit from an incomplete to a complete system. The notion of development (or even progress) is relevant from the perspective of the observer and belongs to their domain.

Chapter III – Embodiments of autopoiesis

The assertion that physical autopoietic systems are living systems requires the proof that all the phenomenology of a living system can be either reduced or subordinated to its autopoiesis .. This proof must consist in showing that autopoiesis constitutes or is necessary and sufficient for the occurrence of all biological phenomena..’(p88).

1. Descriptive and causal notions

The existence of an autopoietic system requires the existence of components with properties that determine their relations such that these realize its organization as a unity. The components are defined by their role in this organization; the domain of the relations of an autopoietic organization is closed. And in this way the autopoietic organization defines a ‘space’ in which it can be realized as a concrete system; the dimensions of this space are the relations of production of the components that realize it, namely Relations of:

(i) Constitution, that determine that the components produced constitute the topology in which the autopoiesis is realized

(ii) Specificity, that determine that the components produced be the specific ones defined by their participation in the autopoiesis

(iii) Order, that determine that the concatenation of the components in the relations of specification, constitution and order be the ones specified by the autopoiesis.

Notions that apply to all autopoietic systems are:

(i) energetic and thermodynamic considerations are not part of the design of autopoietic systems. They are however in vigor implicitly: if the components and their properties, including the relational ones, can be realized then the autopoietic system can be realized.

(ii) Specificity and Order are referential notions in the sense that they carry meaning only in the context of their part in the autopoietic organization of the system under review.

(iii) An autopoietic organization acquires topological unity via its embodiment in a concrete autopoietic system. ‘Furthermore, the space defined by an autopoietic system is self-contained and cannot be described by using dimensions that define another space. When we refer to our interactions with a concrete autopoietic system, however, we project this system upon the space of our manipulations and make a description of this projection… Our description, however, follows the ensuing change of the projection of the autopoietic system in the space of our description, not in the autopoietic space’ (p90)

(iv) Concepts such as coding and transmission of information do not refer to actual processes in an autopoietic system. They do not enter in the realization of the autopoietic system. And so the notion of specificity as described above does not imply coding, information or instructions, but it describes relations between components determined by and produced by the autopoietic organization. The notions of coding and regulation are cognitive and they represent interactions of the observer, not phenomena in the observed domain.

2. Molecular embodiments

(i) Production of constitutive relations; these relations determine the topology of the autopoietic organization including its physical boundaries: ‘There is no specification in the cell of what it is not’(p91)

(ii) Production of relations of specification; these relations determine the identity (properties) of the components of the autopoietic organization and as a consequence its physical factibility. There is no production in the autopoietic system (such as a cell) of relations of specification that do not pertain to it.

(iii) Production of relations of order

These relations determine the dynamics of the autopoietic organization by deteminning the concatenation of the production of relations of constitution, specification and order, and hence its actual realization. This occurs via the production of components that realize the production of relations the production of relations of constitution, specification and order.’There is no ordering through the autopoietic organization of the cell of processes that do not belong to it.’ (p92)

Compensation of deformation keeps the autopoietic system in the autopoietic space.’(p93)

3. Origin

The geometric properties of molecules determine their relations of constitution, namely the topology. Their chemical properties determine their possible interactions hence their relations of specificity. Taken together they determine the sequence and concatenation of the molecular interactions, namely their relations of order. An autopoietic system can exist if its relations of order, is produced and remains constant, concatenate the relations of constitution and specificity in such a way that the system remains autopoietic. Asa consequence, the question about the origin of an autopoietic system is the question about the conditions that must be satisfied for the establishment of an autopoietic space: ‘This problem (of origin DPB), then, is.. a general one of what relations .. any constitutive units should satisfy.’(p93). This leads to the following considerations:

(i) ‘An autopoietic system is defined as a unity by and through its autopoietic organization.’ (p93) ‘Without unity in some space an autopoietic system is not different from the background in which it is supposed to lie, and, hence, can only be a system in the space of our description where its unity is conceptually stipulated’ (p94)

(ii) ‘The establishment of an autopoietic system cannot be a gradual process; either a system is an autopoietic system or it is not’ (p94). ‘Accordingly there are not and there cannot be intermediate systems.’ (p94)

(iii) ‘Auto-catalytic processes do not constitute autopoietic systems because among other things, they do not determine their topology.’ (p94) A unity is defined by operations of distinction as provided by the autopoietic system; .. its origin is co-circumstantial with the establishment of this operation’(p94)

(iv) Two aspects concerning the origin of autopoietic systems: a) factibility and b) the possibility of their spontaneous occurrence. a) the establishment of a system depends on the availability of the components that constitute it and the proper concatenation of their interactions. If these occur then the system is realized. b) given factibility and given the existence of factual autopoietic system, natural conditions exist for the occurrence of autopoietic systems.

Chapter IV – Diversity of Autopoiesis

Reproduction requires the existence of a unity to be reproduced. This is necessarily secondary to the establishment of such a unity. Evolution requires reproduction and the possibility of change and it is necessarily secondary to the establishment of reproduction.

1. Subordination to the condition of unity

Unity is the distinguishability of a unity from a background, hence from other unities. It is the sole necessary condition for existence in a given domain. Its nature and the domain in which it exists are specified by the process of its distinction and determination. ‘Unity distinction is .. an operative notion referring to the process through which a unity becomes asserted or defined: the conditions which specify a unity determine its phenomenology. In living systems, these conditions are determined by their autopoietic organization. In fact, autopoiesis implies the subordination of all change in the autopoietic system to the maintenance of its autopoietic organization, and since this organization defines it as a unity, it implies total subordination of the phenomenology of the system to the maintenance of its unity’ (p97). Consequences of this subordination are:

(i) the establishment of a unity defines the domain of its phenomenology, but the structure of the unity determines the realization of the phenomenology in that domain.

(ii) if the new unity is autopoietic then its phenomenology depends on maintenance of the autopoiesis, which in turn may or may not depend on the autopoiesis of its components

(iii) The identity of an autopoietic unity is maintained while it is autopoietic: as long as it is a unity in physical space and it is a unity in autopoietic space, regardless of the extent to which it is otherwise transformed.

(iv) Only after the autopoietic unity as such is established can it reproduce as a biological phenomenon.

2. Plasticity of ontogeny

The ontogeny means the history of the structural transformation of a unity; in the case of an autopoietic system, it means the history of the maintenance of its identity through continuous autopoiesis in physical space. Comments:

(i) Different classes of autopoietic systems have different classes of ontogenies

(ii) Given that it does not have inputs or outputs, the organization of an autopoietic system determines which changes the system may undergo without loss of identity

(iii) The way the autopoiesis is realized during ontogeny may change, but it should take place without loss of identity meaning uninterrupted autopoiesis

(iv) The changes that an autopoietic system may undergo without a loss of identity are a consequence of deformations; the sequence of the compensating of the deformations is determined by the sequence of the deformations. Nota bene: ‘Although in an autopoietic system all changes are internally determined, for an observer its ontogeny reflects its history of interactions with an independent ambience.’(pp. 98-9)

(v) An observer may distinguish internally and externally generated perturbations even though these are intrinsically indistinguisshable to the autopoietic system itself.

(vi) Changes that an autopoietic system can undergo while maintaining identity can be: a) conservative change in which only the relations between the components change and b) innovative changes, in which the components themselves change. In the first case the system remains positioned on the same point in the autopoietic space, because its components are invariant. In the second case, the interaction leads to a change in the way the autopoiesis is realized and to a change in the position in the autopoietic space, because its components have changed.

3. Reproduction, a complication of the unity

Reproduction is operationally secondary to the establishment of the unity: it cannot be a defining feature of the organization of a unity such as a living system. Living systems are characterized by their autopoietic organization and as a consequence reproduction must be a complication of the autopoietic organization during autopoiesis. ‘.. and its origin must be viewed and understood as secondary to, and independent from the origin of the living organization… in order to understand reproduction and its consequences in autopoietic systems we must analyze the operational nature of this process in relation to autopoiesis’(p100)

(i) Replication – a system generates unities different from itself but in principle identical to each other. Copy – an object or phenomenon is mapped upon a different system so that an isomorphic object or phenomenon is realized in it. Self-reproduction – a system produces another system with a similar organization through a process that is coupled to the process of its own production. ‘It is apparent that only autopoietic systems can self-reproduce because they are realized through a process of self-production (autopoiesis)’ (p101).

(ii) Only in self-replication is the mechanism of reproduction internal (in principle identical) to the pattern reproduced.

(iii) In terrestrial living systems currently known autopoiesis and reproduction are directly coupled. In them reproduction is a moment in autopoiesis and the same mechanism that constitutes the one also constitutes the other, and consequentially: a) self-reproduction must take place during autopoiesis, b) the individuals produced are self-contained and no external self-reproduction is a form of autopoiesis; variation and constancy in each reproductive step are part of the reproductive mechanism but an expression of autopoiesis c) variation of the way autopoiesis is realized can only arise as a modification from a pre-existing autopoietic structure. As a consequence, to maintain autopoiesis constant, variation can only arise from perturbations that require further homeostatic complications d) Replication takes place independently from autopoiesis, copy takes place in heteropoiesis, self-reproduction is exclusive for autopoiesis and its origin is bound to it as a historically secondary phenomenon e) coding, message or information are not applicable to the phenomenon self-reproduction: ‘Thus, in self-reproduction there is no transmission of information between independent entities; the reproducing and the reproduced unities are topologically independent entities produced through a single process of autopoiesis in which all components have a constitutive participation’ (p102).

4. Evolution, a historical network

A state in a sequence of states arises as a modification of a previous state and not as an independent state. The notion of history may refer to the antecedents of a given phenomenon as a succession of events leading up to it or it may be used to characterize the phenomenon as a process.

(i) Evolution is the history of change in the realization of an invariant organization embodied in independent unities sequentially realized through reproductive steps while the structural realization of the unity at each step arises as a modification of the previous one which constitutes its sequential and historical antecedent.

(ii) Reproduction by replication or by copy of an unchanging model implies an uncoupling of the organization of the unities produced and their producing mechanism.

(iii) Ontogeny and evolution are completely different phenomena: in ontogeny the identity is never interrupted, while in evolution a succession of identities is generated through sequential reproduction. Only unities have ontogenies.

(iv) ‘Selection, as a process in a population of unities, is a process of differential realization in a context that specifies the unitary structures that can be realized’ (p105). This is illustrated by the genotypical space and phenotypical space, the first via variation ‘offering’ possibilities to the second as an experiment to select the ones for survival in that specific context a/p quote above.

(v) Evolution takes place as a history of change in the realization of an invariant organization embodied in the realization of successively generated unities. Reproduction must allow for change in the structure of the sequentially reproduced unities.

(vi) ‘Of the two possible mechanisms that can give rise to sequential reproduction, the only one which is accessible to autopoietic systems in the absence of an independent copying mechanism, is self-reproduction, because of the coincidence between the reproducing mechanisms and the reproducing unity. Sequential reproduction through copy takes place a present only in relation to the operation of living systems in their domain of interactions, particularly in cultural learning; cultural evolution takes place through sequential copy of a changing model in the process of social indoctrination, generation after generation’ (p106)

(vii) ‘A species is a population or a collection of populations of reproductively connected individuals which are thus the nodes in a historical network’(p106)

Strictly, a historical network is defined by each and every one of the individuals which constitute its nodes, but it is at any moment represented historically by the species as the collection of all the simultaneously existing nodes of the network; in fact, then, a species does not evolve because as a unity in the historical domain it only has a history of change. What evolves is a pattern of autopoietic realization embodied in many particular variations in a collection of transitory individuals that together define a reproductive historical network. Thus, the individuals, though transitory, are essential, not dispensable, because they constitute a necessary condition for the existence of the historical network which they define. The species is only an abstract entiry in the present, and although it represents a histoorical phenomenon it does not constitute a generative factor in the phenomenology of evolution, it is its result’(p107)

5. Second and third order autopoietic systems

If the conduct of two or more unities is such that is a domain where the conduct of one or more of them is a function of the conduct of the others then the unities are said to be coupled. Coupling arises as a result of mutual modifications undergone by the unities in the course of their ongoing interactions while their identities remain intact. If the identity of a unity is lost then a new unity may be generated as a result of it, but no coupling takes place.’.. coupling leads also to the generation of a new unity that may exist in a different domain from the domain in which the component-coupled unities retain their identity’ (p107)

The nature of the coupling is determined by their autopoietic organization:

(i) Autopoietic systems can interact without loss of identity as long as reciprocally inflicted perturbations lead to compensable disturbances in their structures. They can couple and constitute a new unity while their individual paths of autopoiesis become sources of the specification of each other’s ambience. To persist as a unity the disturbances must remain in the domain permitted by their organizations. As a result the coupling can become invariant while the coupled systems undergo structural changes as a consequence of it. In this way a composite system can develop in which the autopoiesis of the individual systems is subordinate to the ambience defined by the autopoiesis of all the other autopoietic components of the composite unity. Such a system will be defined as a unity by the coupling relations of its component autopoietic systems. A system whose autopoiesis entails the autopoiesis of the coupled unities which realize it, is an autopoietic system of a higher order.

(ii) ‘An autopoietic system can become a component of another system if some aspects of its path of autopoietic change can participate in the realization of this other system’ (p110)

(iii) ‘If the autopoiesis of the component unities of a composite autopoietic system conforms to allopoietic roles that through the production of relations of constitution, specification and order, define an autopoietic space, the new system becomes in its own right an autopoietic unity of the second order’ (p110) An example on earth is the multicellular pattern of organization.

Chapter 5 – Presence of Autopoiesis

1. Biological Implications

.., hence in a living system, loss of autopoiesis is disintegration as a unity and loss of identity, that is, death’ (p112).

(i) ‘The phenomenology of living systems, then, is the mechanical phenomenology of physical autopoietic machines’(p113)

(ii) ‘A biological explanation must be a reformulation of in terms of processes subordinated to autopoiesis, that is, a reformulation in the biological phenomenological domain’ (p114)

(iii)

(iv) ‘.. the biological phenomenological is not less and not more than the phenomenology of autopoietic systems in the physical space’ (p114)

2. Epistemological implications

(i) ‘As a result, the biological domain is fully defined and self-contained, no additional notions are necessary, and any adequate biological explanation has the same epistemological validity that any mechanistic explanation of any mechanistic phenomenon in the physical space has’(p116)

(ii) ‘.. an autopoietic system .. must be explained through autopoietic mechanical relations in the mechanical domain, the phenomena generated through interactions of the autopoietic unities must be explained in the domain of interactions of the autopoietic unities through the relations that define that domain’ (p117)

(iii) ‘The organization of the individual is autopoietic and upon this fact rests all its significance: it becomes defined through its existing, and its existing is autopoietic. Thus biology cannot be used anymore to justify the dispensability of the individuals for the benefit of the species, society or mankind under the pretense that its role is to perpetuate them. Biologically the individuals are not dispensable’ (p 118)

3. Cognitive Implications

The domain of all the interactions into which an autopoietic system can enter without loss of identity is its cognitive domain; this is the domain of all the descriptions it can possibly make. The particular mode of autopoiesis determines its cognitive domain hence the diversity of its behavior.

(i) knowledge (its conduct repertoire) is relative to the cognitive domain of the knower. If the way in which the autopoiesis is realized changes then the knowledge of the unity changes. In that sense knowledge is a reflection of the ontogeny of an organism, because it is a process of continual structural change without loss of autopoiesis and a continual specification of the behavioral capacity hence of its actual domain of interactions.

(ii) Autopoietic systems may interact with each other under conditions that result in behavioral coupling. Autopoietic conduct of A is the source of a deformation in B. The compensatory behavior in B is the source of a deformation in A, whose compensatory behavior for B is the source ..&c. These interactions occur in a chain while A and B interact independently based on their internal structure. Their behavior however is a source of compensable deformations to the other which can be described as meaningful in the context of the interactions in light of the coupled behavior. These are communicative interactions. This consensual domain of communicative interactions where behaviorally coupled organisms orient each other with modes of behavior based on their internal structure is the linguistic domain. Communicative and linguistic interactions are non-informative; organism A does not determine the conduct of organism B; that is determined by their proper organizations.

(iii) ‘An autopoietic system capable of interacting with its own states, and capable of developing with others a linguistic consensual domain, can treat its own linguistic states as a source of deformations and thus interact linguistically in a closed linguistic domain’ (p121). Properties of such systems are: a) An autopoietic system can treat some recursively generated states as objects of further interactions. This can give rise to a meta-domain of consensual distinctions appearing to the observer as a domain of interactions with representations of interactions. The system now operates as an observer. This can occur at any time and so the domain of these recursive interactions with its own states is in principle infinite, unless autopoiesis is lost b) A living system capable of being an observer can interact with descriptive states of itself in the sense of interactions with its own self-linguistic states. It is now an observer of itself as an observer, which can be repeated in an endless manner. The domain is called self-observation and consider self-conscious behavior is self-observing behavior, namely in the domain of self-observation. The observer as an observer remains in a descriptive domain as no description of absolute reality is possible. Some such description would require an interaction with the absolute by the autopoietic organization of the observer, not by an agent of it.

Living systems are an existential proof; they exist only to the extent that they can exist. The fantasy of our imagination cannot deny this. Living systems are concatenations of processes in a mechanistic domain; fantasies are concatenations of descriptions in a linguistic domain. In the first case, the concatenated unities are processes; in the second case, they are modes of linguistic behavior’ (p122)

Notities over Methode / Methodologie

Philosophy (φιλοσοφία, philosophia, “love of wisdom”) is the study of general and fundamental problems such as existence, knowledge, values, reason, mind, and language. Philosophical methods include questioning, critical discussion, rational argument, and the systematic presentation of big ideas. Philosophy is the general and fundamental study of almost any topic. Richard Feynman argues that the philosophy of a topic is irrelevant to the primary study of a topic, saying that “philosophy of science is as useful to scientists as ornithology is to birds.”

Philosophies of the particular sciences range from questions about the nature of time raised by Einstein’s general relativity, to the implications of economics for public policy. A central theme is whether one scientific discipline can be reduced to the terms of another. That is, can chemistry be reduced to physics, or can sociology be reduced to individual psychology? The general questions of philosophy of science also arise with greater specificity in some particular sciences. For instance, the question of the validity of scientific reasoning is seen in a different guise in the foundations of statistics. The question of what counts as science and what should be excluded arises as a life-or-death matter in the philosophy of medicine. Additionally, the philosophies of biology, of psychology, and of the social sciences explore whether the scientific studies of human nature can achieve objectivity or are inevitably shaped by values and by social relations.

Metaphysics replaces the unargued assumptions embodied in such a conception with a rational and organized body of beliefs about the world as a whole. Epistemology seeks by argument to make explicit the rules of correct belief formation. Everyone governs their conduct by directing it to desired or valued ends. Ethics, or moral philosophy, in its most inclusive sense, seeks to articulate, in rationally systematic form, the rules or principles involved.

Methodologie is de verantwoording van de gebruikte methode: die kan de vorm hebben van een debat, een beargumenteerd standpunt van een school, beschrijvend onderzoek naar een standpunt of debat, filosofische analyse.

Volgens welke procedure kunnen wij tot empirisch toetsbare economische theorieen komen en hoe kan een theorie worden getoetst? De hypothetisch deductieve methode schrijft een procedure voor.

Volgens het hypotetisch deductieve model van wetenschappelijk onderzoek wordt bij een toetsing dezelfde procedure gevolgd als bij de toepassing: in beide gevallen wordt volgens Jehle (par. 2.1.2) de theorie opgevat als een wetmatige uitspraak: ‘onder deze set van omstandigheden x doet zich verschijnsel y voor.’

HD-m: observatie >> inductie >> deductie >> toetsing >> evaluatie>> ga terug naar observatie.

Fasen van HD-m volgens Popper: P >> TT >> EE >> P* >> TT* etc (P probleemstelling, T tentative trial, E elimination of error, * volgende ronde, P* is de probeemstelling minus de geconstateerde foute oplossing (error). Economen hebben veel toetsing weggelaten en de cyclus niet volledig doorlopen.

Het doel van HD-m is kennis verwerven die in staat stelt te verklaren of te voorspellen. Hiervoor is het deductief-nomologisch model door Hempel-Oppenheim geformuleerd. De pijlers van dit model zijn: de ‘covering law these’ en de ‘symmetrie these’.

Covering law: een wetenschappelijke verklaring heeft de vorm van een syllogisme. Voor die randvoorwaarden of beginvoorwaarden geldt deze uitspraak altijd: covering.

Symmetrie: verklaren en voorspellen hebben dezelfde logische structuur. Het verschil in aanpak is dat de verklaring uitgaat van een verschijnsel terwijl de voorspelling erop vooruitloopt. Uitgaande van de bekende omstandigheden en kennende de wetten is een verschijnsel te verklaren. Voorspellen werkt andersom: een voorspelling die uitkomt wordt een verklaring. Elke verklaring is potentieel een voorspelling en omgekeerd [Hempel 1965, p 367]. De denkmethode is andersom: progressive of regressive deductie (par. 2.3.1.): op basis van verwachtingen over omstandigheden een voorspeling doen over een ontwikkeling, toetsen of die voorspelling uitkomt en dus het model valide is.

De logische (1 tm 3) en empirische (4) adequaatheidsvereisten voor wetenschappelijke verklaringen zijn [Hempel 1965, pp 247-9]:

1) logisch moeten de premissen relevant zijn voor het te verklaren of te voorspellen verschijnsel

2) de major premisse moet een wet zijn en ten minste 1 premisse moet geldingscondities bevatten

3) De explanans uitspraken moeten zo zijn geformuleerd dat zij empirisch toetsbaar zijn

4) Bij toepassing moet voldaan zijn aan de eis dat de de explanans uitspraak empirisch waar is.

Hypothese = gissing, vermoeden: hoe meer mogelijkheden worden uitgerangeerd des te informatiever de gissing.

Veronderstelling = aanname. Hulphypothese = aanvullende aanname.

Theorema = afgeleide stelling, slotconclusie. Een theorema kan een hypothese zijn.

Lemma = tussentijdse conclusie

Axioma = woord dat zelf niet meer deductief logisch kan worden bewezen

Afnemende graad van algemeenheid: fundamentele veronderstellingen > veronderstellingen over het verklaringsideaal > veldveronderstellingen > hulphypothesen

Verifieren van een hypothese: toetsingsprocedure die ten doel heeft vast te stellen of een bewering waar is, in overeenstemming met de feiten. Universele hypothese (voor alle x geldt) kan niet worden geverifieerd maar wel gefalsifieerd. Existentiele hypothese (er is tenminste 1 x waarvoor geldt) kan alleen worden geverifieerd (geen yeti vinden betekent niet dat niet bestaat). Singuliere hypothese (x is een y) kan worden geverifieerd en gefalsifieerd. Gecorroboreerd betekent: ondanks verschillende pogingen om een hypothese te weerleggen is dat vooralsnog niet gelukt.

Niet goed toetsbaar zijn: tautologie, definitie, normatieve uitspraken, vage uitspraken, hypothesen die wel in theorie maar om allerleid redenen niet in de praktijk toetsbaar zijn.

De combinatie van verifieren en falsifieren is reduceren ofwel herleiden. Het constateren van feiten kan niet alleen met falsificatie. Bij controle van een paspoort wordt eigenschap E n+1 gevonden. Die moet inductief aan de lijst van te controleren elementen voor de vaststelling van de echtheid van het paspoort worden toegevoegd. Een vleugje inductie is nodig om verder te komen.

Via de HD-m methode worden hypotheses getoetst en zo wordt vooruitgang geboekt. Is de kennisaanspraak controleerbaar, is hij terecht, en neemt onze kennis erdoor toe?

Logisch geldige argumentatievormen (Methode – Logica):

1 Modus Ponens: Deductie – Deductief: als p dan q, p, dus q

3 Modus Tollens: Reductie – Deductief: als p dan q, niet q, dus niet p

Logisch niet geldige argumentatievormen (Methode – Logica):

2 Als p dan q, niet p, dan niet q?

4 Drogreden, bevestiging van de consequent: Als p dan q, q, dan p?

Deze zijn logisch dus niet geldig maar kunnen nuttig zijn om een onderzoek op nieuw spoor te zetten 2 of in een bepaalde richting voort te zetten 4.

Nieuwere wetenschapsfilosofie

De epistemologische opdracht is uit te vinden of een hypothese geloofwaardig is of niet. Als p dan q, niet q, dus niet p: als we q betrouwbaarder vinden dan p dan keuren we p af. Wat tegen de hypothese pleit laten we zwaarder wegen dan wat er voor pleit. Omdat de empirie niet zo uitsluitend is als soms wordt aangenomen bestaat het toetsen vooral uit het toetsen van een hypothese aan een andere hypothese [Against Method . Feyerabend 1975]. Want wat wij een feit noemen hebben wij omarmd als vertrouwenwekkend. Maar een feit is niet meer dan een getekende checque: pas iets waard als iemand zijn vertrouwen eraan heeft gegeven.

Maar niet het hele belang van de methode is verloren: met de lancering van een nieuwe theorie krijgt ook het veld vorm en worden nieuwe toetsingsmethodes ontwikkeld. Als p en q dan r, niet r, dus niet (p en q). Waar zit dus de fout, in p of in q? Nooit wordt een hypothese volledig geisoleerd getoetst, vrijwel altijd zijn aanvullende hypotheses nodig, die dan ook worden meegetoetst.

Feiten zijn niet een resultaat van objectieve waarneming en beschrijving, maar van een constructie, een samenspel van analyse en synthese. Bovendien zijn er waarnemingsprotocols, definities en klassificaties. Feiten zijn dus theorie afhankelijk.

Wetenschappelijk observeren is een vorm van experimenteren: het is planmatig en protocollaire activiteit. De eisen eraan zijn: 1) het waarnemingssubject is inwisselbaar, 2) interpretatie en registratie moet gescheiden zijn (vooroordelen vermijden), 3) trefzekere kwalificatie van verschijnselen leidend tot kwantificering ervan.

Introspectie als naar binnen gerichte observatie methode: gezond- of boerenverstand.

Simulatie is proefondervindelijk onderzoek op een model. Het doel is te weten te komen wat er zal gebeuren als de echte condities overeenkomen met de modelcondities. Het gaat niet om de exacte herhaling (ivm de moord op de stand-in) maar om een nabootsing ervan. Simulatie is niet een toestand maar een toedracht. Simulatie als experimentele methode is een manier om via manipulatie van het model informatie te verkrijgen over de structuur of de werking van het systeem dat door dit model wordt gerepresenteerd. Modellen zijn schakels tussen onze wiskundige kennis en de wereld: ‘De wereld is de wereld, alleen onze modellen kunnen wiskundig zijn.’ [Harré, R. . An Introduction to the Logic of Sciences . London . 1960, p 95].

Een simulatie is geen kopie van de werkelijkheid maar komt ermee overeen in belangrijk geachte opzichten. Het fundamentele probleem is een schaalprobleem: hoe de gevonden resultaten kunnen worden ‘teruggeprojecteerd’ op de werkelijkheid.

Logische analyse is het verdelen van complexe uitspraken in kleinere om ze te verhelderen. Russell heeft dat verruimd tot een taalanalyse om samengestelde uitspraken tot elementaire uitspraken te ontleden om van elk de geldigheid te kunnen vaststellen.

De Axiomatisch-deductieve methode (AD-m) bestaat uit:

Stap 1) een theorie opvatten als een onsamenhangend geheel van uitspraken, een aggregaat. Door axiomatisering dit aggregaat omvormen tot een axiomatisch-deductief systeem door uitspraken te verdelen in axioma’s (woorden die zelf niet meer deductief logisch kunnen worden bewezen) en overige uitspraken waarvan bewezen moet worden dat ze ook uit de axioma’s kunnen worden afgeleid. Dit zijn de tussentijdse conclusies (lemma) en slotconclusies (theorema).

Stap 2) omzetting in een calculus: de beschrijvende termen zijn vervangen door symbolen en de regels voor het gebruik van de symbolen. Het axioma stelsel hoeft niet evident te zijn maar wel consistent, namelijk: geen logische tegenspraak, geen axioma voor het bewijzen van het theorema mag ontbreken (volledigheid), de redenering zelf moet uit logisch geldige argumenten bestaan (zindelijk). Als hieraan is voldaan dan is het AD-m systeem ‘logisch adequaat’.

Stap 3) de betekenis van een wiskundig theorema moet worden geinterpreteerd: de betekenis in economische zin moet worden begrepen.

Bij het uitvoeren van een onderzoek zijn deze keuzemomenten van belang:

Keuzemoment 1: het zien van een probleem. In de economie is het coordinatieprobleem bijv. al eeuwenlang het belangrijkst: hoe kunnen de plannen van individuen die op eigen voordeel uit zijn en die via vrijwillige ruil met elkaar in contact staan toch een overeenstemming bereiken?

Bij keuzemoment 1: Realisme (economische theorie is een afspiegeling van het proces zoals dat in feite toegaat) versus idealisme (voorstelling van het beste van alle werelden) versus constructivisme (de werkelijkheid wordt steeds opgebouwd uit kennisstructuren van het systeem, die wij opbouwen door open te staan voor ervaringsgegevens).

Keuzemoment 2: welke probleemstelling verdient de onderzoeksprioriteit? De kunst van het ontdekken (heuristiek) betekent dat de onderzoeker zich realiseert wat de oplossing bijdraagt en niet blind een bepaald onderzoeksgebied uitbouwt.

Bij Keuzemoment 2: Individualisme (economische verschijnselen moeten worden opgebouwd uit individuele keuzes, besissingen en gedrag gegeven de natuurlijke omstandigheden) versus holisme (individueel gedrag moet worden verklaard uit de omstandigheden en het geheel waarvan het individu deel uitmaakt (=holos), bijvoorbeeld alle instituties, stelsel, historische ontwikkelingen.

De laatste is onder te verdelen in sociaal functionalisme de individuele rol wordt bepaald door de functie in het geheel) en sociaal evolutionisme (sociale veranderingen volgen een vast patroon bijv. revolutie theorie van Marx, 5 fasen van Rostow etc).

Bij keuzemoment 2 Deze bovengenoemde tegenstelling in keuzes tussen vrije wilsbeschikking en de situatie hangt af van wat je wilt verklaren: het geheel uit de delen of de delen uit het geheel. Deze tegenstelling kan worden overbrugd met het begrip ‘situatie’ in methodologisch situationalisme [Knorr-Cetina, K. and Cicourel, A.V.. . The micro-sociological challenge of macro-sociology: towards a reconstruction of social theory and methodology . 1981 . Advances in social theory and methodology . Boston . Pp 1-47]. 1

Tot zover ‘weten waarom’.

Keuzemoment 3: welk wetenschapssysteem: de gangbare onderzoeksrichting of een andere volgen? De aantallen alternatieven zijn dan groot: als het geen eik is dan kan het van alles zijn.

Keuzemoment 4: zijn de vooronderstellingen aanvaardbaar? Dit is niet hetzelfde als de veronderstellingen, de aannames. Vooronderstellingen zijn de aannames over het kader van het onderzoek zelf. Dit is vooral causaliteit: traditioneel keten van gebeurtenissen die leidt naar de eerste beweger. Nieuwe causaliteit is een eigenschap die aan een model wordt toegevoegd en kan verschillende vormen hebben zoals statistisch of sequentieel.

Tot hier ‘weten dat’

Een model definieert een systeem, een hypothese is een voorlopige aanspraak, een theorie is een hypothese waarvan de onderzoeker de overtuiging heeft dat die geldig is. Volgens het standaardmodel moet een theorie empirisch bevestigd worden. Een algemene theorie (een economische kringloop) kan niet empirisch worden getoetst: eerst een specifiek model opstellen (de nederlandse economie in jaar x = een toegepast model).

Keuzemoment 5: is de gevolgde methodologie aanvaardbaar? Dit is weten hoe. Wetenschap streeft naar algemeen geldige kennis: universeel geldig (voor alles) en objectief (voor iedereen). Objectiviteit wordt methodisch tot stand gebracht.

Bij Keuzemoment 5: Monisme (1 methode superieur voor alle vakgebieden) versus pluralisme (meerdere methoden voor verschillende vakgebieden mogelijk).

Bijvoorbeeld

Positieve economie = realisme, individualisme en monisme.

Instrumentalisme (Friedman) = postieve economie minus realisme, theorie beoordelen op voorspellend succes. Pragmatisme maar niet blijvend, whatever works om de theorie te vinden, niet om een permanent lapmiddel te vinden van het pragmatisme.

Analytische school: de economische wetenschap is een manier van denken: Keynes: methode om door bemiddeling van modellen correcte conclusies te trekken over de gang van zaken in een bepaalde situatie; ze hebben betekenis in relatie tot een actief subject dat doeleinden heeft en beslissingen kan nemen (agency). Het gaat hier om het aanpassen van de omgeving aan de mens, kennen is beslissen: als x en y dan z, x en y, z. Doe x en y opdat z!

Oostenrijkse school: indidualisme, dualisme, wijsgerig idealisme (wetenschappelijk kennen prevaleert boven de ervaring).

Von Mises: radicaal subjectivisme (our own mental activity is the only unquestionable fact of our experience: knowledge is merely subjective and that there is no external or objective truth), dualisme, praxeologie (handeling als causaliteit: handeling in verschillende condities, bij x condities y handeling).

Popper-Hayek programma [Boland, L.A. . 1982 . The foundations of Economic Method . London . p. 178]:

1) Mensen leren van hun ervaring: Poppers opvatting dat alle kennis feilbaar is en wetenschappelijke kennis weerlegbaar – Poppers opvatting dat actoren in hun hoofd niet iets kunnen doen dat logisch niet kan – Hayeks opvatting dat elke actor steeds rationeel handelt gegeven kennis van de situatie – Hayeks opvatting dat behalve veranderingen in de situatie ook leereffecten van de actor bepalend zijn voor zijn doen en laten.

2) Van gedragsverklaring naar handelingsverklaring: Popper probeert dualisme te overwinnen, namelijk een waarheid voor de natuur en iets anders voor de mens. De essentie van die brug is dat gedrag dat bijv. een amoebe vertoont iets anders is dan handelen dat een mens vertoont: het verschil is overleg. Dat kan niet met natuurwetten worden verklaard, omdat daar het overleg en de rationaliteit (precies het verschil tussen de beide wetenschappelijke benaderingen) niet in is inbegrepen.

Toegepaste economie is het aanwenden van kennis of methoden met een bepaald doel, zoals:

1) beschrijven hoe het echt gaat, 2) verklaren waarom het zo gaat, 3) begrijpen hoe het gaat vergeleken met een norm 4) veranderen of ingrijpen van hoe het nu gaat naar een gewenste gang van zaken. Bij 1) en 2) betreft het de specificatie van een concreet geval uit een algemene regel. 3) en 4) betreft het begrijpen van een feitelijke situatie als een bijzonder geval van een andere algemene regel.

Verklaren en voorspellen hebben dezelfde logische structuur (symmetrie these van Hempel). Een verklaring moet antwoord geven op de vraag: ‘waarom is dit het geval?’. Een succesvole verklaring bewijst waarom iets zich in de gegevens omstandigheden wel voor moet doen: een bijzonder geval van een algemene regel (of samenstel van regels = theorie). P1 Als (p en q) dan r, P2 (p en q), dus vandaar r. Volgens het deductief nomologisch model van verklaren moet P1 een algemene empirisch bewezen universele theorie zijn en moet P2 feitelijk waar zijn. Het DM-m model kan gebruikt worden met het doel om te verklaren, te voorspellen of te toetsen.

Er is een spanning tussen de veronderstelling van rationele agenten en de dagelijkse ervaring. Daarom stelt Friedman zich op het standpunt dat theorie geen empirische verklaring voor gedrag kan geven. Popper en Marschak stellen voor theorieen als maatlat of referentie te gebruiken om afwijkingen tussen modelgedrag en de wekelijkheid aan te wijzen.

Het voorspellend argument

P1 Als (hypothetische relatie H en geldingscondities A) dan (Implicatie I), hypothetische relatie H, geldingscondities A, Implicatie = voorspellende uitspraak I >>

P1 Als (H & (modelcondities M & conditie dat er geen verstoringen zijn C) dan I >>

P1 Als (H & M & C) dan I

P2 Welnu (M* & C*)

C Dus I*

* is de zwakke plekken, de major heeft de schuld afgeschoven.

Voorspellende uitspraak

Objectief (volgens waarnemingsprotocol), positief (het duidelijk wat is) en kwantitatief (richting van de verandering en de omvang van de verandering), onafhankelijk (de gegevens van de situatiebeschrijving (M* en C*) mogen niet gebruikt zijn voor het model (konijn in de hoed en dan er weer uit).

Voorspellingscondities

M* is een model van de werkelijkheid en voorwaarde C bepaalt dat naast de modelfactoren nog andere een rol kunnen spelen voor de voorspelling die buiten beschouwing zijn gelaten. Dit is de belangrijkste twijfel aan de symmetrie these van Hempel betreft voorspellingen in de toekomst, omdat niet zeker is dat er niets meer veranderen zal. Het heden is open, zodat niet alleen de voorspelling van de verklaring verandert maar ook de predictie van de retrodictie. Namelijk een syllogisme bevat een dubbele voorspelling namelijk de theorie in de major en de theorie over de toekomstige situatie in de minor. C* betekent dat alle relevante factoren in het model zijn opgenomen door d eonderzoeker en ook als ze veranderen geen invloed hebben op de voorspelling.

Voorspellingsparadoxen

Dit is het probleem van theorie absorptie [Morgenstern 1972]: als een voorspelling bekend wordt dan gaaan mensen daarop reageren en de voorspelling bevestigen (self fulfilling prophecy) of juist ontkennen (self-denying prophecy). De drogreden is de verwarring tussen kennisverwerving en kennistoepassing.

1Karin Knorr-Cetina works on epistemology and social constructionism. A knowledge object is a theoretical concept to describe the emergence of post-social relations in epistemic cultures. Knowledge objects are different from everyday things and are defined as unfolding structures that are non-identical with themselves (also Jyri Engeström). Social constructionism (also social construction of reality, also social concept) is a theory of knowledge in sociology and communication theory that examines the development of jointly constructed understandings of the world that form the basis for shared assumptions about reality. The theory centers on the notions that human beings rationalize their experience by creating models of the social world and share and reify these models through language. A social construct or construction concerns the meaning, notion, or connotation placed on an object or event by a society, and adopted by the inhabitants of that society with respect to how they view or deal with the object or event. In that respect, a social construct as an idea would be widely accepted as natural by the society, but may or may not represent a reality shared by those outside the society, and would be an “invention or artifice of that society.”

A major focus of social constructionism is to uncover the ways in which individuals and groups participate in the construction of their perceived social reality. It involves looking at the ways social phenomena are created, institutionalized, known, and made into tradition by humans. “Social construction” may mean many things to many people. Ian Hacking argues that when something is said to be “socially constructed”, this is shorthand for at least the following two claims:

(0) In the present state of affairs, X is taken for granted; X appears to be inevitable.

(1) X need not have existed, or need not be as it is. X, or X as it is at present, is not determined by the nature of things; it is not inevitable.

Hacking adds that the following claims are also often, though not always, implied by the use of the phrase “social construction”:

(2) X is quite bad as it is.

(3) We would be much better off if X were done away with, or at least radically transformed.

Social constructionism is at the nurture end of the spectrum of the larger nature and nurture debate. Critics have argued that it generally ignores biological influences on behavior or culture, or suggest that they are unimportant to achieve an understanding of human behavior. The view of most psychologists and social scientists is that behavior is a complex outcome of both biological and cultural influences. Other disciplines, such as evolutionary psychology, behavior genetics, behavioral neuroscience, epigenetics, etc., take a nature–nurture interactionism approach to understand behavior or cultural phenomena.

Maximen

The word Maximen is a contraction of the words ‘maxima sententia’. It represents a game where statements about human behavior are delivered. There are three rules for the game: the maximen must be compact, apply to human behavior in general and contain a ‘pointe’ that guarantees succes as a game. La Rochefoucauld had his first version ciculate in 1663, first published in 1664. More publications with his amendments followed; the last publication bore his strongest signature and was published in 1678.

This is a selection of some Maximen of La Rochefoucauld (1613 – 1680). They are an attempt at the identification of universal patterns in human behavior. The principle that such a thing as universal human behavior exists perhaps points at a pattern in human behavior as a result of other, for instance biological motivators, or general held beliefs.

I put some annotations at each, the reasons why these were selected and the ‘Ch’ refers to the chapter of the book in progress I thought it connects to.

106 About the development of knowledge.

Ch Bib de bab?

Om iets goed te kennen moeten we de details kennen, maar omdat er bijna oneindig veel van zijn, blijft onze kennis altijd oppervlakkig en gebrekkig.

153 About in-born skills and how they develop. Analogy to the relation genotype and phenotype. Analogy to skills coming to bear in an environment that ‘folds around you’.

Ch Patterns in space and time?

De natuur schenkt ons talenten, het lot zet ze aan het werk.

161 Something to do with world view, predicting, planning and acting.

Ch Fair Enough

Onze daden moeten in verhouding staan tot onze voornemens als we een optimaal resultaat willen bereiken.

165 About the utilitarian view that to amass wealth is in itself considered ‘good’. Here specific for the populace.

Ch belief in progress

Met onze verdienste verwerven we de waardering van achtenswaardige mensen, met onze voorspoed die van het volk.

230 About the inclination of people to copy other people’s behavior deeply rooted in human nature.

Ch mirror mirror

Niets is zo aanstekelijk als een voorbeeld. Onze grote weldaden brengen andere weldaden, onze grote misdaden andere misdaden voort. We bootsen weldaden na uit rivaliteit, en misdaden door onze boosaardige natuur die de gevangene was van schaamte, maar door het voorbeeld in vrijheid wordt gesteld.

249 About presentation.

Intonatie, oogopslag en voorkomen van de spreker zijn minstens zo welsprekend als de keus van zijn woorden.

256 About the inclination of people to copy other people’s behavior deeply rooted in human nature. See 230

Ch mirror mirror

Onder alle omstandigheden meten we ons uiterlijk het uiterlijk voorkomen aan van degene voor wie we willen doorgaan. Onze wereld is een wereld van toneelspelers.

270 About the role of reputation especially when it concerns moral decisions.

Ch All d

Behaalde eer staat borg voor eer die nog behaald moet worden.

302 About the human tendency to act on what things appear to be; to act on what things are is seen as risky and wise only if not much is at stake. About rationality?

Ch belief systems oid

We nemen alleen het risico ons niet door de schijn te laten bedriegen, als er weinig op het spel staat.

316 About the mechanism of power: if a difference in power exists then incentives exist that motivate the weaker person to follow that incentive, namely how the stronger persoon expects him to behave and as a consequence to behave differently than how he would have otherwise behaved.

Ch The trouble with harry, de veranderende macht van bedrijven

Wie zwak is kan niet oprecht zijn.

345 About the circumstances revealing our identity to others and to us. About the functions forcing us to show our identities in certain circumstances.

Ch darwinian identity: wagensberg quotes

Het zijn de omstandigheden die onthullen wie we zijn, niet alleen aan anderen, maar vooral aan onszelf.

375 About mediocre minds judging negatively on anything out of their reach. Useful?

Middelmatige geesten veroordelen gewoonlijk alles wat buiten hun bereik valt.

447 About manners (etiquette) as a model for behavior being held in high regard. Useful?

Van alle wetten is fatsoen de minst belangrijke, maar de meest gerespecteerde.

Uit de Weggelaten Maximen

14 About the moral rule that property is protected by the group and how it is rooted in the fear that our property is taken from us.

Ch cake eaters

Gevoel voor rechtvaardigheid is niet anders dan de angst dat ons bezit ons wordt afgenomen. Daarom hebben we diep respect voor de belangen van onze naasten, en vermijden we angstvallig hen schade te berokkenen. Deze angst houdt de mens binnen de grenzen van het bezit dat hem door geboorte of of een speling van het lot is toegevallen; zonder deze angst zou hij voortdurend het bezit van anderen najagen.

39 About the existence of order in an otherwise chaotic world that orients every thing to some orderly behavior and to follow its fate.

Ch order kauffman

Hoe onzeker en chaotisch de wereld zich ook aan ons voordoet, er is toch een zekere geheime samenhang in te ontdekken, een eeuwige orde die is vastgesteld door de Voorzienigheid, die maakt dat elk ding in de pas loopt en zijn eigen bestemming volgt.

45 About the need for a reputation of being retaliatory in the iterated games.

Ch all d

We kunnen alleen dan voortdurend het goed doen, als we anderen ervan kunnen overtuigen dat zij ons nooit ongestraft kwaad kunnen doen.

52 About early sign of the decline of nations (organisations). ?

Weelde en oververfijning zijn de zekere voortekens van staten in verval, want enkelingen die zich alleen om hun eigen belang bekommeren, keren zich af van het algemeen belang.

60 About the need for leadership?

Het verstandigste wat onverstandige mensen kunnen doen is zich aan de juiste leiding van anderen te onderwerpen.

DBC Pierre – Lights Out in Wonderland

This is a selection of some quotes of said author in the above novel. I found this to be useful for the development of my theory on the firm. Importantly in the novel some aspects are pointed out concerning the new relation between individual people and firms. Note that these are quotes from a novel: these can be useful in general and in this case (firm theory) in specific, because some novels have the capacity to shed light on new stuff.

Yes it’s over: profit won the game, but like an infection, killed its host. We were the host. Quality died out because we relinquished the right to filter our own choices; profit became the filter of all choice. Truth died out because we no longer filter true experience; media profit became the filter. The infection found every human receptor, bound to every protein of existence, sucking them dry to feed corporate tumours immunised against us by government. Now the host is a carcass, the market a bacterial enzyme. So adieu!’ [DBC Pierre Lights out in Wonderland fn p. 5]

Ah Customer Service. It falls to Dalí girl to work the gulf between a photograph of a glamour model in a telephone headset and a collections department not based at this address. She squirms because despite efforts to erase her common sense, culture has left a nodule of reason intact. That fragment of tumour makes her uncomfortable enforcing outrageous terms. Her employer should have picked up on that’ [DBC Pierre Lights Out in Wonderland fn p. 8]

David West is an origami person.* Spread, creased, and folded by culture into a clever likeness of a man, a napkin adornment without ideas beyond his own folds, unfolding others to crease then back in his own image’ [DBC Pierre Lights Out In Wonderland p. 15]

Free-market economics is an antiquated, smutty and careless box of tricks whose whimsical main flaw is clear even to a child. Still look how many adults fall breathless with lust to its promise – even though they must abandon empathy and moral judgment to embrace it. Their dirty secret puts all their intelligence to work throwing dust in the air around one glaring truth: that without trickery or eroding value, without extortion, manipulation, deceit or outright theft – profit will simply not perpetually grow’ [DBC Pierre Lights Out in Wonderland fn p. 20].

Remember this: there are no receptors left for cleverness in the public domain. You need never be more than slightly clever or slightly nice. Anything more will arouse suspicion and rage, and confound the software that runs the country. This is because society’s mechanisms are calibrated for stupidity and indolence – and not to be that way is now, by definition, anti-social’ [DBC Pierre Lights Out in Wonderland p. 29].

Stupid nature, which the church led us to admire as a perfect system, has crippled us as it cripples and kills everything through shoddy design’[DBC Pierre Lights Out in Wonderland pp. 31-2].

Capitalism is a limbo. Not a structure but an anti-structure. Driven not towards a defined end, but hovering over a permanent present, harvesting a flow of helpless human impulses. It builds no safe futures, leaves no great structures, prepares no one for roads ahead. And why would it? We don’t march through an age of civilization, but float between Windows and Mac, treading water’[DBC Pierre Lights Out in Wonderland p. 36]

The head of a pharmaceutical company admitted that only thirty percent of drugs work properly on thirty percent of people. And if you observe life you’ll see that he merely identifies the mean threshold of human success in nature. The drug company was a working model of the mathematics of expectation, endeavour, whim and fortune. Therefore abolish the notion of one-hundred-per-cent solutions to touted by culture. According to nature, thirty percent is a windfall’[DBC Pierre Lights Out in Wonderland pp. 43].

And if it was profitable it must be true´ [DBC Pierre Lights Out in Wonderland p. 64].

.. and highlights are the pixels of a life. We’re all witnesses together of the jumping fish, nobody else in the world is. The same pixel is added to each of our lives, ..’[DBC Pierre Lights Out in Wonderland p 79]

It has done this thinking that I am a food writer’ [DBC Pierre Lights Out in Wonderland p 104].

Sculptor’s Testament by Rodin

AUGUSTE RODIN
Nov 12, 1840 – Nov 17, 1917
SCULPTOR’S TESTAMENT TO THE YOUNG ARTISTS
(As translated by Paul Schnell)

You young people about to make yourselves beauty’s servants, perhaps it will please you to find here, a résumé of much experience.

Love with devotion the master that preceded you. Bow to Phidias and Michelangelo. Admire the divine gaiety in the one and the savage melancholy in the other. Admiration is the wine of the noble spirit. But guard against imitating your predecessors.While paying attention to the delivery, you must understand the essence of what is eternally fruitful, namely the love of nature and truthfulness. These are the two great passions of all geniuses. All have loved nature without compromise. Acquiring this knowledge will help you avoid affectations. Tradition recommends that you consult with reality and forbids all blind following of any master. Nature is your only goddess, believe in her without reservation and be convinced that she is never ugly, nor will she ever inhibit your ambition to serve her. All is beautiful to the artist, his penetrating gaze discovers the true character of all things and all beings, that is to say, the inner truth that shines through the form and this truth is beauty—and you will meet up with this truth—-work persistently.

You sculptors
, strengthen your sense of spacial depth. The intellect finds it difficult to deal with this concept and stays preoccupied with that which represents the surface. To think of the form in terms of material density is hard, but it is your task. Establish clearly, above all, in the figures you are shaping, the total layout. Emphasize strongly the postures. Every part of the body, head, shoulders, hips and bones declares itself to you. Art demands certainty, only withcertainty of stated lines are you diving into space and taking possession of it. When your composition of the large and whole is firmly in place, you are home free, as your figures are already living. All the rest seems to comply with the whole and details appear to materialize as if by themselves. (‘Quand vos plans sont arrêtés, tout est trouvé. Votre statue vit déjà. Les détails naissent et ils se disposent ensuite d’eux-mêmes’). So when you sculpt, do not think in terms of surface, but rather in terms of space. Let your intellect perceive of every plane as if a mass, where its final appearance is struggling to escape its background. Imagine having it grow upon you by itself. All life emanates from a center, wherefrom it sprouts and spreads from the inside out. It is in this manner that one feels in all good sculpture, a powerful inner strength, that is the secret in ancient art.

You painters,
observe in reality, depth extensions (perspective), the third dimension and look at a painting by Rafael and see how this master, when showing a frontal view of awoman, he lets the breast recede at a slant and thereby creates the illusion of the third dimension. All great painters work spatially. In their knowledge of the spatial lies their strength. Think about the fact that mass, rather than line, tells the story. When you sketch, do not worry about the outlines, but only that which is bodily, the bodily determines the outline. Practice without let up, devote yourself completely to the work. Art is nothing but feeling, but if you don’t know about mass, proportions, color and lack dexterity of hand, all living feeling is for naught. What indeed would become of even the greatest poet in a foreign land, whose language he did not know. Unfortunately, in thenew generation of artists, one finds poets not wanting to learn to speak, which is the reason they can only stutter. Be patient, do not believe in the value of impulse, it does not exist. An artist’s most noble virtues are reflection, care, honesty and willpower. Create your work with straightforward workers. Be truthful, you young people, I don’t mean for you to be exact in a boring way, such as that found in photography and castings. Art begins first and foremost from the inner truth. All your shapes, all your colors, must express feeling. The artist who is content with a superficial likeness and who slavishly reproduces worthless details, will never become a master. When visiting an Italian Campo Santo, you have no doubt seen the childish manner with which the artists entrusted with decorating the graves, busy themselves reproducing literally all garment embroidery, lace and braids worn by the statues. I suppose you can call them exact, but they are not the truth, because they do not point to the soul. Almost all sculpture remind us of Italian cemeteries or the memorials in our public places, where one sees only capes, tables, chairs, machines, balloons and telegraphs. No inner truth, therefore no art. Abhor this kind of rubbish, be truth-loving to the extreme. Do not ever hesitate to express what you feel, despite stepping in opposition to commonly accepted concepts, you may not be understood at first, but fear not being lonely, soon friends will follow you. That which is the deepest truth for one human being, is the same for all. Make no grimaces, no fancy twisting to attract the public. Simplicity and naturalness, the fairest is right before your eyes. Those people you know the best, my very dear and great friend Eugene Carriere, who departed us so early in life, knew in his painterly rendition of his wife and child, that he only had to glorify the maternal love to be exalted.

Masters are those who observe with their own eyes, what the world has seen and by perceiving the beauty in all things—too simple for others to catch sight of. Accept the criticism, you will understand it easily—it is what will make you sure of yourself when torn by doubt. Be not confused by criticism that does not affect your conscience. Fear not unjust criticism—it will upset your friends and force them to reflect on the love they bear you and realize the foundation on which it rests, making them, as a result, more determined to stand by your side. When your talent is at an early stage of development, you will begin to acquire just a few followers, and on the other hand, quite a few enemies. Do not lose courage, the first group will be victorious, because they know why they love you—the others do not know why they hate you. The first is passionately involved with the truth and constantly supplying you with new followers. The others show no durable eagerness for their false opinions—the first is tough, the other go as the wind blows, the truth wins inevitably. Do not waste your time with social or political connections. You will come to see many of your contemporaries, with the help of intrigue, gain fortune and fame, they are not truthful artists. Some of them, in the meantime, are quite worldly clever and if you allow yourself to tangle with them on their territory, you will waste all your life’s energies on this and not have a minute left over for your art. Love with devotion and passion your artistic calling, there is nothing more beautiful. It is more sublime than the common man suspects.

The artist provides a grand example, he loves his work, his pay is the joy he receives from work well done. The world will become a worthwhile place, when all the people in it, have the souls of artists, that is to say, when all enjoy their life’s work. Art is also a wonderful guide to sincerity. The true artist always expresses what he thinks, at the risk of offending all existing prejudices.

Wagensberg on Identity / Individuality

‘Any real object divides the world into two parts: itself and the rest of the universe. Both parts mutually influence each other through some boundary. So that changes in one part induce changes in the other. Living systems are characterized by their tendency to become independent of the uncertainties of their environments, which is equivalent to to the perpetuation of a certain identity of their own.’

Wagensberg – 2010

I have taken the view that a firm be seen as a ‘black box’ or as transparant with regards to their inner workings, the mechanisms that drive the subsystems. My claim is that it is entirely possible to make valuable expressions about the behaviour of a firm in its context, without knowing every detail that is going on. However, to allow me to move away from the detail of the subsystems, I need a new perspective, i.e. that of the firm as a system. Taking the systems view, or defining the boundary between the system and its environment, I need to be able to identify what separates the firm from its environment, at least what it is that interacts with its context, e.g. competes for scarce resources. Taking a view of the firm as such a unit of evolution (in a Universal Darwinian sense), allows me to treat it as a single unit, a single individual so to say. In this chapter I will not (yet) engage in the logic that moves the system, but rather to suggest a terminology (for everyday use so to say) as a basis to enable the conversation about this logic to develop. In this chapter I will, in other words, attempt to bridge the gap between biological evolution and memetic (or cultural) evolution of a firm, or in fact reduce the size of it in light of Universal Darwinism.

Darwinian thought is driven by individualism: reproduction and selection act on individuals in a species. The success of the species hinges on this school of thought, i.e. on the sequential successes of individuals: it is based on their successful matings, their battles and in the long run, their adaptations when changes in their context occur. However, natural selection acts on many levels, not only on an individual level. In addition, the concept of individuality of some lifeforms is unclear, which leads to the question whether the concept of individuality has degrees. In the same vein to suggest the treatment of a firm as a single unit, while it encompasses many subsystems and people at its core requires a clear vocabulary at least. Wagensberg c.s. have proposed a conceptual scheme in which selection levels at that above that of the individual organism is interpreted as the evolutionary emergence of higher-level individuality [Wagensberg, García Leal, Lins de Barros, 2010] with an eye on the development of a hierarchichal evolution theory.

Biological individuality can, based on the quote above this chapter be defined as: ‘A living individual is a part of the world with some identity that tends to become independent from the uncertainty of the rest of the world‘ [Wagensberg, 2009]. Because all isolated systems tend to thermodynamic equilibrium, in biological terms this means death, any such system cannot afford to isolate itself from its environment. To remain alive, the system must maintain some steady state far from thermodynamic equilibrium by exchanging material , energy and information with its environment. The exchange of material and energy is described by the entropy balance:

δS = δiS + δeS (6)

Where: δS = the variation in the entropy of the system; δiS = the production of entropy dependent on the irreversible processes inside the system; δeS = the exchange of entropy bewteen the system and its environment.

The steady state is described by this necesssary condition:

δiS = – δeS (7)

The exchange of information bewteen the system and its environment is described by information theory [Shannon, 1948]:

H (E) – H (E / B) = H (B) – H (B / E) = I (E, B) (8)

Where: E = source of information the environment; B = source of information the system (B for Biota); H (E) = the complexity of the environment; H (B) = complexity of the system; H (E / B) = the ability of the system to anticipate uncertainty of the environment; H(E / B) = the sensitivity (to change) of the environment with regards to the complexity of the system; I (E, B) = I (E, B) = the information transfer bewteen the system and the environment.

Assume as an example an increase in the complexity of the environment H (E). Is the system now capable of establishing a new steady state? The system can survive this by: increasing its own complexity H (B), by increasing its ability to cope with the environmental uncertainty by learning new tricks. Another option is by moving away from the environment or by changing it.

It may also change itself, lose some of its own identity, by joining forces with other individual systems and in so doing recover independance from the uncertainty in the environment. The ‘objective’ of this exercise of course is to arrive at a nee steady state as per the above. This method of evolutionary innovation is called association (the other method is mutation).

In a biological sense the ways of generating a new identity by changing its identity are: cloning (corals, siphonophores), symbiosis in which species permanently rely on each others existence to fulfill (replace) a metabolic requirement, and kinship in which structured and differentiated societies consisting of family groups (insects, e.g. species of bees, ants). Associations lead to a rise in the hierarchichal level of organisation of living matter. In a biological sense, cloning does not pose a problem with regards to identity, because there is no genetic differentiation: the members of the identity are all of the same genetic make-up and so the unit of selection can be extended to the entire population. Symbiosis also doesn’t pose a problem, because the individuals participating in the association evolve mutually genetically independent, albeit in a process of parallel co-evolution. However in a biological context, sexual reproduction poses problems to the unit of selection, because it hinges on crossover and mutation. When sexual selection has occured, the selection pressures are on the descendants of the unit reproducing. The offspring ar per definition not equal to the unit reproducing: gene and organism selections are not equivalent. By transferring the unit from the phenotypic level to the genotype, the problem is not solved: a gene is not a material but merely a packet of information with no capability to directly interact with the world. The process of sexual selaction does not preserve the genotype. It does, however, protect the genome, that part of the genotype (the set of genes) that defines each species. In other word, although a lot of information in the genotype is prone to change, the set that detemines the identity, and prevents humans from turning out to be a cow or a lizard in the next generation. Variations in genotype provide not an increase the average apritude but in variation in aptitude: descendants have more capabilities to adapt built-in. In summary: what is selected is not a ‘clone with optimal aptitude’ but a clad (a set of organisms related through descendancy and with an array of different aptitudes). This therefore is the unit of selection and its definition must connect with the definition of identity. Wagensberg suggest to rise above the level of organisms instead of dropping down to the level of genes. A higher level of individuality is required. The identity that is perpetuated is is not the genotype, but rather that defined by the a reproductively compatible genomen and a shared gene pool. That is the identity of a biological species. As an example: sexual reproduction represents a minimum case of group selection, in this case two individuals, a male and a female and this group represents a higher-level individuality, which is the minimum unit of selection in this case. From this follows the definition:

A Darwinian individuality is any living entity that is the object of selection as a whole and has a genetic identity that can be perpetuated.

This in turn leads to the extension of the definition from an individual organism to a degree of individuality for organisms: an example of a minimum is a reversible symbiotic relation, an example of a maximum is a human being, in which many different species of organisms have evolved into one unit. Useful criteria to identify the degree of individuality, relevant from an evolutionary perspective are:

Unit of selection – is the pressure of selection rather on the whole or on the parts (i.e. on the higher-level individuality or on the constituents – negative -1, positive +1, 0 no significant change if we change level

Identity – individualities must have a genetic identity that can be perpetuated. We can assess the degree of genetic individuality of a group of individuals as the intersection between the genotypic identities of the elements making up the group. The (metaphorical) equation is:

(9)

Where: i = individual in the group of n; identity of individual, characterised by j attributes Ai = {ai ,1 ,ai ,2 , ai ,3 , .. ai ,j }

Identity of individual member i of the group, Ii is defined by:

Ii = Ai – Ω

 

The collective identity is minimum (individual identity is maximum) when there is no intersection, Ω = φ, and Ii = Ai. Collective identity is maximum (individual identity is minimum) when there is perfect homogeneity and Ai = A = Ω. This can be scored as follows:

+1 if the members of the whole share the same genotype (Volvox, siphonophores, corals, to a lesser extent mole rats, fungus cultivating ants, termites), 0 to individual associations of of the same species and -1 to symbiotic associations between individuals of different species.

Independence of the whole from the parts – an individuality is an independent whole made up of interdependent parts. Examples in biology are the male and the female in any sexually reproductive relation. Another is the relation between the sterile worker and the fertile reproductive castes; this is a seeming paradox if the individuality of the object of selection is transferred to the entire swarm. Another aspect of the parts sacrificing some their independence to the whole is that the individual parts are less viable than the whole: the death of an ant is less unlikely than the extinction of an ant’s nest. The related question: is the whole more (+1), equally (0) or less (-1) viable than its parts? Or: are the individuals more (+1), equally (0) or less (-1) dedicated to the whole (the individuality) than to the preservation of themselves? This is relevant as individuals group into a new individuality as a defence against an environment whose uncertainty is rising.

Irreversibility – This means that the collective identity of an individuality constructed by association becomes so robust that the new cohesion is irreversible. In the article at hand this aspect is merely illustrated with examples from biology. The question to ask is: to what extent are the individuals that consitute a higher-level individuality capable of disassociating themselves to return to an independent life? Not at all (+1), to some extent (0) or without effort (-1).

Internal organisation – If the individuality is of a higher order, the functions of the parts are at the service of the whole and the activities of the associated elements are connected and coordinated. A Darwinian individuality is closer to an individual the more centralised the control of its activities and specialisation in the functions of its parts. The question to ask is: does the higher-level individuality exhibit centralisation and functional differentiation: to a large extent (+1), some of these (0), none at all (-1).

Reproduction – an individuality resembles an individual in the classical sense when, in addition to consituting a selective unit, it also represents a reproductive unit. This means that such individuality can give rise to another similar individuality. The question to ask is whether the individuality reproduces as such and whether it needs (some of) the constituent individuals to reassociate after the reproduction? The collective completely achieves (+1), partially (0) or not achieved (-1) relative to the individuals.

Development – the issue here is whether the individuals associating have a common history in terms of growth and differentiation in the acquisition of their steady state? If construction takes place though growth and differentitation (+1), if either one (0) and neither (-1). As an example: all cells in a zebras descend from one zygote and all ants in a mount descend from the same queen, but not all zebras in a herd come from the same ‘source’.

Compactness – does the collective individuality have a well defined exterior and an interior and is it possible for any point in the collective to identiy exactly where it belongs? In mathematical terms: are two point on the interior (or the exterior) always connectable via points at the interior (or the exterior) of the individuality? Maximally compact, such as a zebra (+1), loosely joint colonies (0), ant’s nest or a herd of zebras (-1).

With regards to the firm, biological evolution is of course irrelevant, because no biological reporoduction takes place, not through any of the mecanisms above. And yet the concept is appealiing, because some group of individuals shows collective behaviour. So here goes, let score the concept of a firm to these citeria:

Unit of selection = +1

Identity = 0 (there is no population from which the intersection can be observed)

Independence of the whole from the parts = +1

Irreversibility = 0

Internal organisation = +1

Reproduction = -1 (from a memetic perspective 0 or +1?)

Development = -1

Compactness = +1

The overall score is +1! That leaves the firm as a unit of selection and reproduction between an ant’s nest and a lichen. In other words: the conclusion from this score is that firms can not be seen as per the definitions given, as a individuality, or only to a very limited extent. That is mainly due to the criteria related to the reproductive powers of the whole.

This might be far more interesting from the meme’s eye view.